
236 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

The Application of Hypercomplex Matrix

to Variable Parameter Networks*
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Summary-The hypercomplex matrix methods developed to treat
variable parameter elements are reviewed. The application of these
techniques to the linear analysis of networks of variable parameter
elements is demonstrated by considering a specific problem. A net-
work containing two resonated variable capacitors separated by
one-eighth wavelength of transmission line is first considered by
the phase dependent admittance method. A partial treatment of

the subharmonic case is given by this method to provide a physically
plausible understanding of the network behavior. The complete

problem is treated by the hypercomplex matrix methods. The dis-

cussion of the results illustrates how the network properties are

determined from the mathematical formalism. Calculated charac-
teristics of the two-capacitor network are given for severaf values of
circuit parameters.

I. INTRODUCTION

c

IRCUITS CONT.41N’1 NG time-varying elements

are usually analyzed by representing the time-

varying reactive components by phase dependent

negative conductance. While adequate for simple cir-

cuits, this approach is not applicable to complicated

networks because the phases at each component (and

thus the corresponding negative conductance) are not

known at the outset. In his treatment of traveling-

wave amplifiers, Krolll has shown how the phase de-

pendent admittance can be written in a matrix form

which is phase independent. If we combine the ma-

trix admittance with the techniques of ordinary cir-

cuit theory, the result is a powerful tool for handling

networks containing time-varying components. It is

the purpose of this paper to review the matrix repre-

sentation for variable parameter elements and to show,

by application to a directional parametric amplifier,

how this formalism is used in circuit analysis.

We will first require an understanding of the mathe-

matical description of a variable capacitor, z and this is

developed in Section II. We will show that a capacitor

varied at angular frequency 20J responds to a subhar-

monic voltage at angular frequency co in a way which

can be represented by a phase dependent admittance.
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Since phase dependent quantities are awkward to work

with, we will, by suitably defining the voltage and cur-

rent as vectors, write the admittance function as a

matrix which does not involve the phase. The matrix

will be expressed as a hypercomplex number, a form

which proves convenient for circuit analysis since there

is a correlation between the components of this repre-

sentation and the real and imaginary parts of ordinary

complex numbers. The hypercomplex admittance for-

mulation can also be developed for the nonsubharmonic

case. This extension to arbitrary frequencies will be

made to give us a method for calculating the frequency

response of networks.

When we have developed the hypercomplex ad-

rni ttance formalism, we will have sufficient background

to analyze networks containing variable parameter ele-

ments. The use of these principles is best illustrated by

applying them to a specific problem. We will, therefore,

in Section I I 1, introduce a network consisting of two

resonated variable capacitors which are separated by

one-eighth wavelength (at the signal frequency) of

transmission line and which are driven by pump volt-

ages which differ in phase by 90°. This network is of

particular interest since it illustrates a means of obtain-

ing directionality in parametric circuits.3 The problem

will first be treated in terms of the phase dependent

admittance representation. .Mthough this method is

not too convenient mathematically, it has the advantage

of providing a physical explanation for the circuit be-

havior which is obscured by the matrix formalism. The

phase dependent admittance treatment will, therefore,

make plausible the results of the matrix analysis.

In Sections IV and V we will respectively solve the

subharmonic and arbitrary frequency cases using

hypercomplex matrix analysis. The discussion will il-

lustrate how the hypercomplex admittance developed

in Section II is combined with the usual techniques of

circuit analysis. We will set up the problem as if the

network were an ordinary circuit and show how to

substitute hypercomplex matrices for ordinary ad-

mittances and vectors for voltages and currents. Since

we have repkiced ordinary admittances by matrices, the

problem becomes mathematically complicated. How-

ever, by properly interpreting the voltage vectors which

represent the input and output, the solutions can be

obtained in familiar terms. These solutions are dis-

cussed in Section VI.

3 K, E, Schreiner, private communication, August 7, 1958,
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II. NIATHEMATICAL13ACXGROUND

As indicated in the Introduction, we begin by formu-

lating the mathematical representation for variable

parameter elements. The variable capacitor is here con-

sidered in the linear approximation, that is, the signal

voltage is so much smaller than the pump voltage that

we may neglect the capacitance vari~tion caused by the

signal. Further we assume that the capacitance varia-

tion is a linear function of the pump voltage so that the

capacitance may be written as

c’ = Co[l + 2p Cos 2(ut + *)] (1)

where 2W is the angular frequency of the pump.

In any real parametric circuit the voltage sensitive

capacitor has a capacitance-voltage function similar to

that of Fig. 1. The pump is a sinusoidal voltage centered

near the point v = O. Thus (1) constitutes only the lead-

ing terms of a series representation for the true capaci-

tance variation. In addition, an>-thing except an in-

finitesimal signal will result in a capacitance variation

beyond that caused by the pump. Our approximations

are supported by the facts that 1) we can mathemat-

ically show that the higher terms in the capacitance

series have a small effect and 2) laboratory work at

least qualitatively substantiates predictions based on

these approximations,

CAPACITANCE VARIATION

k 4 v
-3 -2 +2 +3

PUMP VOLTAGE

Fig. l—Capacitance variation resulting from sinL!soidal pLLmp
voltage applied to typical variable capacitor.

Phase Dependent .4dmittance

Within the framework of the approximations just

discussed, the properties of a variable capacitor for a

signal at one-half the pump frequency can be expressed

by an admittance function. Just as for an ordinary

capacitor, we start with the relation

q=cv

where v is the signal voltage. The curre[~t through the

capacitor is the time derivative of the charge so that, if

we write v = ~’o cos (ut+@) and use (1) for C, we readily

obtain (neglecting the current component at 3w)

i = ~ = – &’o[l + ,0 cos 2(4 – t)]VO sin (d + 4)

+ PACO sin 2(4 – +)VO cos (d+ 4). (2)

From this expression we see that the admittance is

1’ = jLOCo[l + p cos 2(4 – *)] + PUCO sin 2(4 – ~) (3)

where j= 4T.

Thus far we have proceeded exactly as one does in

setting up the admittance for ordinary ac components.

The effect of pumping the capacitor manifests itself in

our admittance function in two ways: 1) the admittance

expression contains a conductive term, and 2) both the

conductance and susceptance depend on the relative

phase of the signal and pump. The fact that certain

values of phase make the conductance negative in-

dicates that the variable capacitor may be used as an

amplifier or oscillator.

The Matrix .4 dm ittance

The admittance we have derived expresses the prop-

erties of a variable capacitor but is awkward to apply

to any but the simplest networks because the admit-

tance is a function of the phase of the voltage. To derive

a phase independent admittance, we express our voltage

as

v = VI cos Wt — vz sin d

where VI = VO cos 4 and vz = 1’0 sin q5. We can also write

this voltage as a mathematical vector

oVI
v= ,

V2

Similarly, the current can be written as

We can now define an admittance matrix relating the

voltage and current in this new representation. It is

simple to verify that the expression

with the admittance matrix ~ given by

( –p sin 24 –l+pcos2+
7 = @co

)
(5)

l+pcos2# p sin 2#

is equivalent to (2). -

Voltage and current vectors and matrix admittances

and impedances are used in circuit analysis in the same

way tlmt we use the complex quantities of ordinary ac

analysis. All the methods of circuit analysis are app-

licable if we formally substitute vectors for the volt-

ages and currents and matrices for the admittances
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and impedances. The principle of using matrices and

vectors in circuit analysis is best illustrated by applica-

tion to a specific problem, and the succeeding sections

are devoted to such an example. First, however, let us

consider some properties of the admittance matrix

which will simplify its use and show a correlation to

the real and imaginary parts of complex admittances.

The Hypercomplex Re@esentation

Any 2X2 matrix can be written as a linear combina-

tion of certain unit matrices. (Such a breakdown is

analogous to writing a position vector in terms of unit

vectors along the x, y, and z axes. ) The system of unit

matrices is

and any matrix ~ may be written as a linear combina-

tion

Z=a3+@j+yl +81.

~ as thus written is called a hypercomplex number.

Certain properties of the unit matrices which are useful

and may be readily verified are:

j2=_~ i’ =1=1

jh=–lj=i

~=–jl=i

lL=– Ll=j.

It is aIso useful to note that Euler’s theorem e;p = cos

.9+7 sin 6 holds in h ypercomplex form.

The advantage of the hypercomplex representation

becomes apparent when we apply it to the matrix

admittance of (5). In hypercomplex form this admit-

tance is

~ = JcOCO+ PwC’0(1 cos 24 – 1 sin 2+)

= jWCO + puCJe-2~*

(6)= e~@oCo(l + Ap)e–~*.

The correlation between hypercomplex admittances

and the usual complex admittances now becomes ap-

parent. If we set p = O in the above expressions, we get

the hypercomplex admittance for an ordinary capacitor

as ~=juCO. This formula is similar to the complex

admittance except that j = <— I is replaced by

()

o –1
——

10”

The correspondence of ~ to ~ is carried even further

when we note that j“ = — ~. In general, we can write

hypercomplex admittances and impedances from com-

plex admittances and impedances by using the real

part as the coefficient of ~ and the imaginary part as the

coefficient of j. Thus, in the hypercomplex representa-

tion, the impedance of a resistor and inductor would be,

respectively, ~R = RI and ~L =juL.4

.4 rbitrary Frequency Case

Our treatment thus far has been restricted to a signal

frequency of exactly half the pump frequency. If a

signal with frequency not equal to half the pump fre-

quency is fed into a parametric circuit, then the out-

put will contain both the original frequency and an

idler frequency. This fact can be mathematically repre-

sented by the equations

I(ml) = Tl,v(til) + 712tv(@2)

I(q) = 7,,tv(@J + Y,,v(cd,) (7)

where the currents and voltages are considered to be

vectors as in the preceding paragraphs.

Eq. (7) is convenient if there is a real distinction

between signal and idler as, for instance, would be the

case if the signal and idler were well separated from

each other so that the idler could be excluded from the

output by means of a filter. For circuits operating near

the subharmonic frequency, it is preferable to use a

specialized form of signal. Let us consider a modulated

signal where the carrier is exactly the subharmonic

frequency and the angular modulation frequency is v.

Then the signal contains the angular frequencies

W1=U— V and UZ=U+V where w=uPu,~PIz. (We assume

that the carrier amplitude is zero. If this is not so,

the carrier can be handled separately by the analysis

developed for the subharmonic case.) Note that the

idler frequency for the U1 component of the signal is WZ

and vice versa. Thus, the output for an amplitude

modulated subharmonic input will have the same upper

and lower sideband frequencies as the input, and the

parametric action will not introduce any new fre-

quencies.

lZq. (7) ma>- notv be specialized to the amplitude

modulated signal. In matrix form, (7) reads

The four component vector

V(cdJ

()V(OJ,)

corresponds to a voltage

V(f) = VII cos tilt – VM sin colt

+ J“21COSad – VM sin w,t. (9)

For an amplitude modulated voltage it is more con-

venient to talk about the angular carrier frequency a

and angular modulation frequency v than about upper

i For convenience, the unity matrix will not be explicitly written.
Thus ~= R implies ~ = R;.
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and lower sideband frequencies. Eq. (9) may be re-

written in terms of u and v as

V(t) = Real Part { V-le~”~ I.-es u~ — t’-zef’~ sin d] (10)

where

V-l = V~e’d’

V-z = Vz’e~~Z

and the correspondence to (9) is expressed by

v,’ Cos 41 = Vll + V21 VI’ sin ~1 = ~22 – ~12

Vz’ Cos rjm = V12 + V!22 17z’ sin @z = VU – V~I

w~=o—1-v Wz=(.o+v

We may represent the voltage 1‘(t) by a vector

v-,
v- =

()V-2 -

If we compare this vector representation with that used

in (8), we note that we now have a complex two-conl-

ponent vector rather than a real four-component vector.

The current may be similarly represented by a complex

vector and we may write a matrix relation

1- = Pv- (11)

where ~- is a complex 2 X2 matrix. It may be shown

that, in the terms of (8), that

r- = +(711+ 722) + *(T?12 + y21)A—

+j;[;(yll –-722) + +(ylz – 721)~1. (12)

Since ~- is a complex 2 X 2 matrix, we have written it in

the hypercomplex representation and refer to it as a

“complex” hypercomplex number. For the particular

case of a variable capacitor

7- = e~t(ja + jlv)C~(l + tp)e–~+. (13)

lNote that for v = O, this expression reduces to (6) which

was derived for the subharmonic voltage. We can also

show that the complex hypercomplex impedance of a

variable incluctor is

Z- = et~(j~ + jiv)~o(l + ~p)e–y+. (14)

II 1. PHASE DEPENDENT ADMITTANCE SOI.tTTION

In the preceding section we have seen how a variable

capacitor can be represented by a phase dependent

admittance and by a matrix admittance. These con-

cepts and the methods of applying them will be clarified

if we consider a specific problem.

The Two- Capacitot’ ~iycuit

The network chosen for the illustration is shown in

Fig. 2. Cl and Cz are variable capacitors placed across a

transmission line at points one-eighth of the sub-

harmonic wavelength apart. An inductor L is pl~ced

across each capacitor and is chosen to resonate out the

‘0’ ’20’1 1

c, . Co[l+zp ,,. 2.1]

C*= CO[I+2P ,!. 2(.1.+)]

$ 2
LCO

Fig. 2—Two-capacitor network used to
illustrate mathematical formalism.

nonvai-yillg portion of the capacitance at angular sub-

harmonic frequency a. The capacitors Cl and Cl are

physically identical but differ in the phase of their

pumps. The pump at CZ lags that at Cl by- 90° so that

we may write

CI = CO[l + 2p sin 2ut]

and

C, = CO[l + 2p sin 2(wt – ~/4)].

Because of the difference in pump phase between Cl

and C2, the network looks different for a subharmonic

signal traveling from right to left than it does for one

going from left to right. Thus, we would expect the

circuit to exhibit directionality. Also, as in any sub-

harmonic parametric circuit, we would expect the be-

havior of the circuit to depend on the phase of the

signal. In particular, we would like the network to

amplify signals of a particular phase traveling from 1

to 2 and to attenuate those signals which are 90° dif-

ferent from the amplified phase. Also, we do not want

amplification of signals of any phase traveling from

~ to 1,

The easiest way to analyze the circuit is by use of the

matrix representation outlined in the preceding section.

However, in formalizing the problem for mathematical

convenience, the matrix method tends to obscure our

physical feeling for the behavior of the circuit. Before

proceeding with the matrix analysis, we shall, there-

fore, discuss the network in terms of phase dependent

admittances. Because these admittances are of the

same type we are familiar with for ordinary resistors

and capacitors, the discussion should give us some

physical understanding of the circuit.

Phase Dependent .-1dm ittance .4, nalysis

The phase dependent admittance approach is to re-

place C, and C, by effective admittances (which of

course, depend on the phase of the signal). A signal

traveling along the transmission line will see these

admittances as discontinuities which give rise to mul-

tiple reflections, the transmitted portions of which add

up to the signal transmitted through the network.

In discussing the problem it is convenient to resolve

the signal into two components separated in phase

by 90°. One component, referred to as “in-phase,” is of
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the proper phase relative to the pump to make the

conductance of the variable capacitor a negative

maximum. The other component, callecl ‘{out-of-

phase” or “quadrature,” then gives a maximum positive

conductance. We shall only treat the case of an ‘(in-

phase “ input at terminal 1 by the phase dependent

admittance method and defer the complete solution to

the more appropriate matrix analysis. The portion of

the problem treated here should be sufficient to illus-

trate the phase dependent admittance and to provide an

insight into the behavior of the network.

If we write the capacitance as

C = CO[l + 2psin 2(d + +)]

and the signal voltage as sin (d+@) then the phase

dependent admittance is5

r = – P6L70COS 2(4 –+) +j6JCO[l + isin-z(~ – 4)1.(15)

Since + = O at Cl the ‘(in-phase” signal corresponds to

@ = O. The total admittance placed across the line at

point 1 is obtained from (15) (and the fact that @CO is

resonated out by the inductance) as GZ = —pw CO. This

conductance represents a discontinuity on the trans-

mission line. The effect of this discontinuity is to cause

a reflection which, by ordinary transmission line theory,

is characterized by a reflection coefficient

Go ~
——
Gp

K= (16)

;+1

where GO is the characteristic admittance of the trans-

mission line and GP = Go+GC. We shall see that, for the

case under discussion, only- Gz =pw CO and Gz = —poJCO

occur. Thus, it is convenient to set r = I G./GO/ and

to define

K+= K(Gz>O)=–~ (17)
2+r

A’. = K(G3 < O) = A
2–r

(18)

where the right-hand side of (17) and (18) follow directly

from (16) and the definition of r. In this notation the

reflection coefficient for the ‘(in-phase” input wave at

the first capacitor would be A’_.

We can now, with the aid of Fig. 3, follow the signal

through its successive reflections. The portion of a unit

incident wave which is transmitted past the first capaci-

tor is (K_+ 1). At the second capacitor this wave will

still be “in-phase” with the pump at that point so that

the reflection coefficient is again K–. Thus, the part of

5 Eq. (15) differs from (3) because of the different form assumed
for the capacitance and signal voltage. If we substitute ~=@ –45°
and q5=@-90° for ~ and @ in (3), then we obtain (15).

I

Fig. 3—Internal reflection path for an “in-phase”
input to the network of Fig. 2.

(a)

IN ~.+, ~ ,-, +,+8 K++, 0“’

(b)

Fig. 4—Block diagram of feedback representation for “in-phase”
input to two-capacitor network. (a) “In-phase” output. (b) “Out-
of-phase” output.

the original signal which is transmitted past the second

capacitance is (K._+ 1) 2 while the part which is re-

flected back towards the input is K-(K-+ 1).

When this reflected portion reaches the first capacitor,

it will again be partially reflected. This time, however,

the reflection coefficient will be K+ since the signal has

traversed the one-eighth wavelength section two times

and thus lags the pump by 90°. The reflected signal is

then given by K+K–(K_+ 1) and is shifted 180° in

phase because it is reflected from a discontinuity whose

impedance is less than the characteristic impedance of

the line. Similar considerations give the amplitude

after reflection by the second capacitor. By the time

the signal gets back to the input it has made four

traverses of the one-eighth wavelength section and has

undergone two 180° phase changes at reflections. Thus,

the next reflection is determined by K_ and we get a

wave of amplitude K+zK_2@-+ 1) which is 180° out of

phase with the original input,

If we consider the component of the total output

which is “in-phase” with the pump at the output, the

network can be regarded as shown in Fig. 4(a). The

blocks (K- +1) represent the amplification by the

variable capacitances. 1/(1 +6) results from regarding

the reflections as giving a feedback system in which a

fraction K-’K+’ of the signal transmitted through the
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transmission line section is fed back to the input. The

ovel--all gain is readily found to be

.A @ =

.

If we consider the

1
(K + 1)’ –

1 + hy.’h’>

4(2 + r)

(~ – .2)2+ .4 “

(19)

cluadrature components of the out-

put, it is not difficult to see that the network can be

represented as in Fig. 4(b), and that the ovel--all gain

for this portion of the output is

()r~
A!loo = .400 —

2+7’ “
(20)

The feedback approach illustrates certain properties

of the network. The blocks representing gain in Fig. 4

can be considered to arise from the negative conduct-

ance which an ‘(in-phase” input signal sees the variable

capacitor to be. Thus we would expect that an ‘iout-

of-phase” signal would see positive conductance and

would be attenuated. Likewise, if a signal traveling in

the reverse direction were “in-phase” at one capacitor,

it would be ‘iout-of-phase” at the other, and so there

would be little, if any, over-all gain. MTe would also

expect the forward gain to be increased by some at-

tenuation between the capacitors. This paradoxical

statement can be understood from the feedback ap-

proach when we remember that the portion of the

signal which we regard as feedback has been reflected

through the one-eighth wavelength section four times.

Since the directly transmitted signal passes through

only once, it is clear that attenuation would have a

much stronger effect in reducing feedback than it

would in attenuating the direct signal.

The properties we have just outli necf are made

plausible by the phase dependent admittance approach.

We shall now verify them quantitatively by a hyper-

cornplex matrix analysis of the problem.

IV. THE HYPERCOMPLEX TI{EATMENT

OF SUBHARMONIC CASE

.4s indicated earlier, the hypercomplex analysis

proceeds by using those techniques of ordinary circuit

analysis which may be appropriate to the problem and

formally substituting vectors for the currents and volt-

ages, and matrices for the admittances and inl-

pedances. Since our problem can be considered as a

cascading of a variable capacitor, a transmission line

section, and another variable capacitor, the transmis-

sion matrix approach seems appropriate. G

The Orditlary I’runsmission Matrix

In the notation of Fig. 5 the transmission matrix

s See, for instance, S. Ramo and J. R. Whinnery, “Fields and
Waves in Modern Radio,” John Wiley and Sons, Inc., New York,
N. Y.; pp. 461-463, 1953.

Fig. 5—\\’ave convention for transmission matrix.

Fig. 6—Cascade eqliivalent of two-capacitor network.

equatiol) is written as

(21)

where ‘T,,t are the elements of the transmission matrix

and the ( +) superscript indicates a wave incident on

the network while a (–) sign denotes an outgoing

wave. In applying the transmission matrix to the vari-

able capacitor problem, the voltages will be replaced by

two component vectors so that the vectors in (21) will

really have four components. Likewise, each of the Tij’s

will become 2 X2 matrices.

The network of Fig. 2 may be regarded as a cascading

of the sections shown in Fig. 6. Sections (a) and (d) are

shunt elements Cl and Cz respectively, each in parallel

with L. Section (b) is the one-eighth wavelength of

transmission line while (c) represents an attenuation

introduced between (a) and (d). We include the attenua-

tor in our present treatment because our phase dependent

admittance discussion has indicated that attenuation

would have the interesting effect of increasing the gain.

The transmission matrix for the over-all network may

now be determined by writing the matrices for each

section aLnd taking their product. Following Ramo

and Whinnery,7 the transmission matrices are:

(1 – zo17,/2
T(.) =

–zo171,/2

Zll Y,/2 1 + zoYJ2 )

(1 – z“ Y,/2
~(d] =

–zo Y,/2

Zo Y,,/2 1 + Zo v,/2 )

(22)

(23)

()a ()
T(.) =

o l/a “
(25)

where a is a scaIar attenuation factor defined by

~Zz– = ~ T’”l+ and V1– = a V2~.

The transmission matrix for the whole network can

now be obtained from the product of (22)–(25) as

T = T(d) T(c) T(b) T(a). (26)

III performing the multiplication, we must be careful to

7 Ramo and IIThinnery, oP. cit.,p. 463.
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preserve the order of terms in the product since each

of these terms will be replaced by a matrix. The evalua-

tion of (26) is straightforward and, after some long

algebra, we obtain

~_dz

2a

“(

a~(A– B)–c
a2(D–::–~:CG+C)) (27)

az(F– G)+(D+E+C)

where

z“ Yz
A = l+j~2F:+Tj

Zo Y, Zo Y2
B=j+ y–+~

~ = P2Z0’ Y, Y, -Y2Z02 Y2j Y,
+4

4

D = Zoj Y1/2 E = ZOYI/2

F = ZOYJ2 G = 20 Y,j/2

and

p2=l–a2 ~t=l+aj.

Hypercomplex Substitution

Thus far we have treated the problem exactly as if

the network were made up of ordinary (nonvarying)

components (except that we preserved the order of

terms in the multiplication). We can now adapt this

treatment to the variable capacitor problem by formally

substituting the matrix j for j and writing the admit-

tances Y1 and Yz in appropriate matrix form. 8 The

admittance Y1 for section (a) arises from the parallel

combination of L and Cl. By (6) the matrix admittance

would be

where we have taken + = —45°. (See Footnote 5.) Be-

cause of resonance, the first two terms of 71 cancel;

the last term simplifies by Euler’s theorem and we get

71 = pOJc& (28)

In similar fashion we get for Y, (with ~= – 90°)

72 = – pwcol (29)

If we introduce r = p~COZO and denote the elements of

(27) by subscripts as in (21), the transcription of the ~

matrix to hypercomplex form yields

‘1’:=$[2”2+:’2+’($2-2”

(30)

Since each element written in (30) is a 2X2 matrix,

the T matrix can be written as a 4X4 matrix with

scalar elements. In this form

2ffz + ~ rz – 2a2r2

—————————

20!% – 20? + : r2

I
—————————

________ —~__— ~

_f ~
r + -y%

2

I

—.———___—

0

2–:r2

—————————

I –––––––––l–––––––––l–-

(31)

s Rigorously, we should replace all admittances and impedances
by matrices. However, ZO is a real impedance so that it would be

The matrix of (31) combined with (21) completely

replaced by the diagonal matrix represents the network if we write each of the voltage

z, o

()
2,= —

waves as a vector. We shall begin our solution by con-
= Z“l.

o 2, sidering the same case as was treated by the phase

Thus the term ZO~I, for instance, is equivalent to ZOI’1 and so we
dependent admittance method. In this way we can

retain ZO as a scalar. develop an understanding of the vector voltages,
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TABLE I

NETWORK RESPONSETO UNIT INPUT IN TERMS OF ‘(IN-PHASE” AND “OUT-OF-PHASE” COMPONENTS

243

Out-of-Phase
at

Terminal 1

In-Phase

Tern?nal 2

Out-of-Phase
at

Terminal 2

In-Phase
at

Terminal 1

2a(r + 2)’
—.—

8

–2a3r2

6

– 2m3r2 2rz(4 – r’)

6

– 2a3r%

8

Transmitted-in-Phase

2A” 2rI(2 – r)’ – 2a(4 – ,2)

8
Transmitted Out-of-Phase

——— —.—

Reflected in-Phase

Is

r(r + 2)(2 — ~rz) – 2a’r(2 – r) r(r + 2)(2 — ~rz)

6

2a2r(, + 2)
—————

88 6

– 2a’r(r + 2) —Y(2 — r)(2 — P72)
——— ——— ——. —

8

2A(2 – 7) —F(2 — Y)(2 — prq

6
Reflected Out-of-Phase

8 8

‘=”’4-4’’’+8=(:-2)2+(2(%2Y2Y

fact that all aspects of the problem can be determinedJrector Representation of In+uts

from the one matrix of (31). By the phase dependent

admittance method we would have to repeat the entire

problem from the beginning each time we changed the

phase or position of the input. LJsing the matrix method,

however, we write the appropriate vector for each input

condition and solve the resulting equation. The problem

is completely solved if in addition to (32), we consider

the following three inputs:

An “out-of-phase” input on the left and no input on

the right, represented by

The problem we treated by the phase dependent

admittance was that of “in-phase)’ input v = sin titat the

left hand terminals of the network. According to our

vector definition in Section II, an “in-phase” wave

incident on the left corresponds to

()oVI+ =

–1 “
(32a)

Since there is no input on the right (we assume a

matched termination),

“+=(:)“+=(:) (33)o
V2+= ()o“

(32b)

An “in-phase” input at the right and no input on the

left, represented byThe remaining quantities VI– and Vz– represent,

respectively, the reflected and transmitted portions of

the signal to be determined.

In our phase dependent admittance treatment we

determined only Va–, the transmitted output. In that

discussion we resolved the output into a component

which was ‘{in-phase” with the pump at the output, and

a component which was in quadrature. This resolution

is a convenient one for a traveling pump and signal, and

we shall retain it in our present discussion. Writing the

output in this way corresponds to writing v as

.4 cos (d – 7r/4) –1? sin (d – 7r/4) where – B is the

“in-phase” component and A the ‘(out-of -phase.” Since

Vz– is defined from Va– = a cos d – b sin d, we can

obtain A and B from Va– by simple trigonometric

manipulation. The expressions for A and — B obtained

by the matrix method (the actual solutions are given

in Table I) are the same as (20) and (19), respectively.

The advantage of the matrix method arises from the

‘2+=-+(0“+=(:) ’34)
An ‘(out-of-phase” input at the right and no input

on the left, represented by

‘2+=+(-)‘1+=(:)‘3’)
For each of these inputs there will be a transmitted

wave on the side o{ the network opposite the nonzero

input and a reflected wave on the same side as the input.

Each of these outputs is resolved into an “in-phase”

and an “out-of-phase” component and the gain

(output/input) for each component is tabulated in

Table 1. The outputs may also be expressed in terms of

amplitude and phase shift; this representation is given

in Table II for the four input conditions.
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TABLE II

NETWORK RESPONSE TO UNIT INPUT IN TERMS OF AMPLITUDE AND PHASE SHIFT

x =~1 a’ - =:2

—

Out-of-Phase Out-of-Phase

Terminal 1 Terms/nal 2
—. ———— —.— —.———— _——

2LY
Transmitted Amplitude y [a’~’ + (f + ‘2)41’” : [~’f’ + (2 – ?)’1’” 2: [a’?’+ (4 – r’)’]’” ~ [(4 – r’)’ +a’Y’l’/’

Transmitted Phase
[ 1a2Y2— (r + 2)2

tan–l
[

tan_l a%’z — (2 — Y)2

1
~an_,(1–a’)r’–4——— ____

[ 1
~an_,(1 – CY’)P – 4

a!%j + (r + 2)2 l+ + (2 — r)z [
.——. ——.

4 – (1 + crz)rz –(a’ + 1),2+4 1_——— ———.——.————————————
+ [(Y+ 2) ’(2 – p?”)’

~— [(2 – /.Lr’)’ + 4a4]’” ‘2$ [(2 – prz)t + 4al]lz

~ [(2 – r) ’(2 – pr’)’

Reflected Amplitude
r(r + 2)

+ 4a4(2 – ?2)]’1’ + 4a’(r + 2’]1/’

Reflected Phase “+:;1 [+%%1 +$%:-3=1 t’”-’[+%i%ltan–l

(The ambiguity in phase angle (+) is removed by the rule that sin@ has the same sign as the numerator of the algebraic expression for tan @.)

V. BANDWIDTH ANALYSIS

The question which arises in the practical application

of any circuit is “What is the bandwidth ?“ We shall now

consider this problem for our two-capacitor network,

thereby illustrating the complex hypercomplex formal-

ism developed for bandwidth analysis. The transmission

matrix approach is applicable to the bandwidth problem

if we use the complex hypercomplex admittances rather

than the hypercomplex form used in the subharmonic

treatment. (The pure subharmonic solution can, in fact,

be obtained from the bandwidth analysis. The reader,

however, should profit from seeing the conceptually

simpler real hypercomplex analysis applied separately

and can now follow the present treatment with an eye

towards seeing how it reduces to our earlier work.)

Complex Hypercomplex Transmission Matrix

The complex hypercomplex formalism was developed

to specifically treat the case of a subharmonic carrier co

amplitude modulated at angular frequency v. lf we

write this signal as in (10)

V(t) = Real Part { V-le~y~ cos d – V-~e~v’ sin d} (36)

then we could define a complex vector representation

()v-,
v- =

v-2

A complex hypercomplex admittance relating this volt-

age vector to the current written in the same form was

defined by (11) and was stated for a variable capacitor

in (13). If we write the transmission matrix of (21) with

complex hypercornplex elements and express the voltage

waves as complex vectors, we can obtain the solution

to our bandwidth problem. The transmission matrix

will be a function of the angular modulation frequency

v so we can determine the output waves as a function

of v for any particular input.

Just as in the subharmonic case, we obtain the trans-

mission matrix by considering the cascaded sections of

Fig. 6 so that ~, as in (26) is

T = T(d) T(c) T(b) T(a).

~f.1 and T(,o are the same as (22) and (23) where now

YI and YZ will be complex hypercomplex numbers.

YI is the admittance of the parallel combination Cl and

1. so that:

7-, = (T-)cl + (F-).. (37)

(Y-)cI is obtained from (13) by setting ~ = —45°

(see Footnote 5) as

(T-)a, - [jqf + j~ – jrji + A]zO-l. (38)

We have introduced here, in addition to the abbrevia-

tion r = pwCOZO, the notation

f = v/a

and

q = (Jxozo.

The comlplex hypercomplex admittance of the induct-

ance is obtained from (14) with p = O so that, neglecting

quadratic and higher terms in ~,

.

(7-). = (2-).-’ = –$+i;fz” (39)

~-1 is obtained by substituting (38) and (39) into (37)

and using the resonance condition COCO= l/coL to get

T-l = [2jqj – jrf~ + rfi]ZO-’. (40)

In similar fashion we find

7-2 = [2jgf – jrji – A] ZO-1. (41)

Eqs. (40) and (41), when substituted in (22) and (23),

determine T-t,,) and T-(,c. (We may note that
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(40) and (41) reduce

at ~= O.) The resulting
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to (28) and (29) respectively

matrices in their 4 X 4 forms are

2–r–j2qf

——— ——. .

jrj

r + j2qf

jrf i –f – j2qf jj

r — j2qf2+r–j2qj

——— ————

jrj

———————
1

T--(.) = ;

–jrf

—

—

(42)
L

2+r+j2qf ; –jYj’
I

[––––_–_ l——————

--.jYf

j(-- %f + rf)

2 – r + ,j2qf—v + j2qf
I

–jrj

and

2 +j(–2qf + rj-)

—————————

r

‘r , r

,_ —____

2 – j(2qf + rf) r I –j(2qf + rf)
I I

43)—————————l————————— l——–-——————l————————–

j(2qf – rf) ~ —’r
I
I 2 + j(2qf – Yf) I —

I I I
_——_— ——— —

—’r

I

j(2qf + @ ~ —r , 2 + j(2qf + ?“)

We can also show that

I
&~-1fr14 \ ~&]JT/~ ~ o 0

I—––—–i––—–—l--–—––l–––--–
I I

_a2e–)fm/4 1 ~2~-ifT/4 ]
I

010

—————l—————l————— l————— (44)

l–––––l–––––l--––––l–––––

The matrices of (42)–(44) are rather complicated. The scattering matrix, on the other hand, expresses

output quantities in terms of input and is defined byTheir product, which is the transmission matrix for the

entire network, would be even more intractable, and we

would not readily see the properties of the network from

this complicated matrix. It, therefore, seems best to

continue the problem numerically with the aid of a

computer. The computer (an I B M 704) is programmed

to receive the matrices of (42)–(44) in numerical form

and to manipulate them so that the properties of the

network can be read directly from the computer output.

We ask the computer to determine a scattering matrix

from the over-all transmission matrix. Transmission

matrices are convenient for setting up the problem

initially since the over-all matrix is the product of the

matrices for the individual sections. However, the

transmission matrix does not conveniently relate output

voltages to the input. For instance, in the subharmonic

problem we had to solve a system of simultaneous

equations to get our solution.

(45)

Eq. (45) is seen to be a rearrangement of (21) with out-

going waves (negative superscripts) on the left. our

solution is thus determined from the input by the multi-

plication of a simple vector by a matrix which is ob-

tained from the transmission matrix by a transformation

which is programmed into the computer. g [We note that

(45) differs from the usual scattering matrix definition

in that V(z)– and V(I)- are interchanged. )

o When we solved the simultaneous equations which arose in
treating the subharmonic case we, in effect, determined T’. The
solution of simultaneous equations can be expressed mathematically
as a matrix transformation. The equations which arose in the sub-
harmonic case were so simple, howeye:, that it was not necessary
to introduce the mathematmal sophlstlcatlon of a matrix transfor-
mation.
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Input Vectors where we assume that the individual elements of the

Thus far we have seen how to determine our solution
T’ matrix have been calculated. V-z– is then easily seen

in terms of a vector representation. It remains for us
to be

now to specify our input waves in vector form and to

see how to interpret the output vectors as ordinary volt-
(-)

V-2– = –t 12 .

ages. Our input wave consists of an amplitude-modu-
– t-zz

lated subharmonic carrier and may be written as From our definition of (36) we may write

v = sin (d + ~) cos v1. V~–(t) = Real Part { –t-lzef”~ cos uf + l-ZZe’” sin tit}

Just as for the unmodulated input, it seems reasonable =
Real Part { ~(—t-lz — jt-2Je~fti+’1$

that maximum gain would occur when the carrier of a + f(–t-~~+ jt-22)cj(”-v)t] (53)

signal incident from the left in Fig. 2 was “in-phase”

with the pump at the first capacitor; i.e., @ = O. We
where the second line is obtained from the first by

therefore want to express the voltage wave
trigonometric manipulation. The (CO+V) component of

the output (upper sideband) is thus determined by the

T(l)+(t) = sin cd cos vt. (46) quantity

As may be seen by use of (36), the vector representation
t-u+v = — *(r12 + jt--’n) . (54)

for this “in-phase” input is
The (u – v) component, or lower sideband, is conven-

0

()

ientl y stated as the complex coilj ugate of these elements.
v-l+ = (47) By taking the complex conjugate of the brackets in (53),

–1 “
it follows that the (a — v) component is determined by

In this manner we can deternline the vector representa-

tion for any carrier phase. As for the subharmonic prob-
t-@_.= – +(t-12*+ jt-22*). (55)

lem, the four cases specified in (32)–(35) are of interest We have shown so far that for an amplitude modu-

here. These input conrfitions and their vector represen- ktted input of the form (sin cot cos ~t) as in (46) the upper

tations are: and lower sidebands of the output are given by (54) and

a) “In-phase” carrier at left and no input on right
(55), respectively. It is usual to express the relation be-

tween input and output in terms of an amplitude change

o

()

o

()

(or gain) and phase shift. Since the input of (46) can be
V-l’t = v-2+ = (48) written as

–1 o

b) “f)ut-of-phase” carrier at left and no input at right
Vi+(t)= $[sin (a + u)} + sin (OJ – v);] (56)

()

1

()

o
the output, in terms of gain and phase shift, would be

v-l+ = V-2+ = (49) written as
o 0

V’-(t) = { t’.+. sin [(CJ + v) t+ O.+.]
c) “In-phase” carrier at the right and no input at left

+ t’.-.sin [(CJ – v)t+ 0.-,]}. (57)

11

() ()

o
v-l+ = (50)

‘-2+=–7 1 0

d) “Out-of-phase” carrier at right and no input at left

V-2+ . ~ ()1 0
v-l+ = () (51)

42 –1 o“

Outjwt Vectors and Their Intei+retatio?z

The output waves V(l)– and I’(ZJ– may now be deter-

mined for each of the input conditions by substitution

into (45). We shall consider the details only for the input

of (48). Eq. (45) combined with (48) reads

()
v-,- t-~~ t-g~ t-23 f-24 —1

(52)v-,. =
1-H t-32 t-33 t-:w 0/

We can approach the form of (57) by writing (54) and

(55) respectively, as

t-ti+.(o)= )t-m+,Iei’%+.

and

t-u_u(@) = ] t-@_u [ e~$ti+.,

The upper sideband is then given by

Real Part { I t-@+V I ejo+,ej(u+~j t}

= I t-.+, I Cos [(0+ V)f + 4.+”] (58)

The amplitudes of (58) and (59) are the same as the cor-

responding terms in (57), but the trigonometric forms
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T.~BLE III

MATRIX ELEMENT COMBINATION FOR DETERMINING NETWORK RESI,ONSE

=“ ““ $=’~’1 ~rn~:- =$=

Carrier Out Carrier Out
of Phase

Terminal 1

+(1 –j)[f-3J + t-ti +(1 +j) [f”33 — r’J4
Transmitted Upper Sideband *(t-,, – jl-1,) *(1-H + J“f-j, )

+ j(t-,, + t-d] + j(t-,, – r’,,)1

}(1 – j) [i-JJ* + t-,,* i(l + j) [L-,l,l* — 1-3.,*
Transmitted Lo\ver Sideband *(L-22 * – jf-12*) +(/-,, * +jt-2 ~*)

+ j(t-,,’ + 1-,4*)] + j (t-4.1* — t-44*)]

I I I I

Reflected Upper Sideban(l

Reflected Lower Sideband

differ. We can make

letting

I I

the respective terms identical by

I I—

II gives the il~fornmtion in terms

O,.+” = +.*”+ 7r/2.

Then the relation between t-tit.(~) and t-~f,(@) is

(60)

on]} in the

(0) is chosen

so that the argument tlu~, is the phase shift defined by

(57). From (60) we see that the correct phase shifts can

be determined from the elements of the scattering

matrix if we multiply (54) and (55) by ~ and take the

argument of the resulting complex quantities. The gain

is the modulus of these quantities and is, of course, un-

affected by multiplication by J.

The reasoning of the preceding paragraphs can be

used to express the gain and phase shift in terms of the

scattering matrix elements for the various input condi-

tions. These relations are summarized in Table I II. For

the “in-phase” carrier case treated above, the entries

for the upper and lower sidebands of the transmitted

output are just (54) and (55) multiplied by j. To cfeter-

mine the gain and p!lase shift for any particukr input-

output combination, we take the modulus and phase

angle of the corresponding entry in Table 11 I.

t’[. DIscLssLoN ot~ R~SU1.’rS

In the preceding sections we have seen how- the phase

cfependellt admittance method and the matrix nlethods

can be used to tteterlllilw the characteristics of a net-

work. The transmission and reflection properties for a

subharmonic signal are summarized in Tables I and II.

The form of Table I expresses the output in terms of

~(imphase’> aild ~fout-of-phase” components while Table

and phase shift. The response to a

be calculated from Table II 1.

Subhwmonic P~o~e~tie>

~[1 + j) [f-l,j* — t-14*

+ j(~-n* – ~-21’)1

of a total amplitude

modulated signal can

As indicated earlier, the network we have been

analyzing should exhibit both directionality and phase

sensitivity. These properties can be verified by calcu-

lating the quwltities in ‘rabies I and I I for some specific

cases. The principal parameter which determines the

behavior of the network is r =pco C,,Z,,, the ratio of nega-

tive conductance to the char~cteristic admittance of the

transmission Iille. .~ppropriate values for this parameter

and for COCOZO (\vhich will be necessary to determining

the frequency response) are shown in ‘~:lble IV. Two

presentl~’ available diodes are cited, one designed for

microwave use, and one intellded for low frecluellcies.

The table shows that a reasonable value for tiCoZO is of

the order of 6. If p is chosen as p =0.22 (a value sub-

stantiated by empirical capacitailce versus voltage

characteristics), we then see that r is in the vicinity of

?’= 1.3.

‘rable V shows the numerical values of the quantities

ill Tables I and 11 for a = 1 (no attenuation) wld Y = 4/3.

Since a unit input is assumed, these quantities may be

considered as gain factors. IVe see from the table that

the only appreciable transmitted signal occurs for an

“ill-phase “ input at ternlilud 1. ‘rhus we hal’e cfemom

stratecf that the network should be able to select a signal

of a particular phase aIld should provide amplification

only in one direction. ‘ 0 (These properties have also been

observed experinlentall> ill a two-capacitor network at

25 lLIc by Allen.ll) The f~irly large reflected components

i[ldicate a nlisumtch [or cert:aill input phases. In any

aPPlicatiO1l of the Ilel\vork these reflections Inust he

10 ‘rhe gai]l in the rey erse direction i~ close to unity for both

phases. In general we cannot expect a traveling-wal,e type para-
metric amplifier to give attenuation in the reverse direction for a!l
phases. If ~ve built an amplifier which would attenuate one phase,
there woLdd be another phase which is amplified.

II ~~i,r~te conlllllljl ic;ltioll, iiLIgLiSt ~?, 195~,
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TABLE IIT

CI~CUIr PAItAME’rERs FOR Z%VAILABLE VARIABLE CAPACITORS

Frequency Diode
Coat Oper- LOCOZOfor r for
sting bias Z,= 100Q p=o.22

\ —.— 1 )

10 kMc Texas Instruments 1.0 pf at 6.3 1.4
Type XD-503 Ov

25 Mc Two Pacific Semi- 170 pf at 5.4 1.2
conductors 1.OV
Type V-1OO in each diode
parallel

TABLE V

VOLTAGE RESPONSE OF NETWORK TO UNIT INPUT
FoR /’=4/3, a=l.O

\
Input In-Phase

I
out-of-

1
In-Phase I out-of-

at Phase at at Phase at

“’-’JTerminal Terminal Terminal Terminal
output 1 1 2 2.

Transmitted
in-Phase 5.5 –0.88 –o 88 1.1

Transmitted
Out-of-Phase I 0.88 I 0.22 I–1.1 I–0.88

Total Trans. I I I I
Amplitude I 5.6 I 0.91 I 14 I 1.1

Reflected
In-Phase 1 0.24 ! –0.44 I 0.24 I 2.2

Reflected
Out-of-Phase 1 –2.2 I –0.05 1 0.44 1 –0.05

Total Ref ‘td.
Amplitude 2.2 0.44 0.50 2.2

carefully considered since they can lead to instability in

the over-all circuit. It is possible that mismatch can be

reduced by such circuit modifications as slightly chang-

ing the length of the one-eighth wavelength section of

line between the two capacitors or making this section

of different characteristic impedance than the input and

output lines. The mathematical methods of this paper

should provide a powerful tool for analvzing such

modifications.

Our matrix treatment has been set up to take account

of attenuation between the two variable capacitors. The

effect of this attenuation on an “in-phase” input signal

is shown in Fig. 7. There the transmitted and reflected

signals (expressed in db relative to the input) are plotted

as functions of transmission factor (reciprocal attenua-

tion). We see that the transmitted component initially

increases to a maximum at a = 0.86, and then drops off

as the attenuation is increased. In terms of the phase

dependent admittance analysis, this effect is explained

by noting that the attenuation at first reduces the feed-

back and thus increases the amplification. However, as

the attenuation becomes too large, the loss of trans-

mitted signal becomes more important than the gain

increase resulting from further reduction in feedback

and the output begins to drop. We note also that the

attenuation effects a slight reduction in the reflected

~omponent,

Fig, 8 shows directionality and phase discrimination

ratio as a function of attenuation. These parameters

characterize two significant properties of the network.

Directionality is defined as the ratio of transmitted out-

put when the signal is incident on terminal 1 to the

transmitted power output when the signal is incident on

terminal 2. The phase discrimination ratio is the ratio

of the transmitted output for an “in-phase” input to the

transmitted output for an “out-of-phase” input. The

phase discrimination for a signal traveling from terminal

1 to 2 and the directionality for an “in-phase” input are

both improved by attenuation.

Frequency Response

In Section V we saw how the complex hypercomplex

formalism could be applied to determine the frequency

response of the network. The complex hypercomplex

analysis was set up to handle an amplitude modulated

subharmonic carrier so that the input could be con-

sidered as an upper and lower sideband centered about

the subharmonic frequency. In this way the problem of

considering the idler frequency separately was avoided.

Table III gives t-mf,, the sidebands of the output for

an input consisting of equal upper and lower sidebands

in terms of scattering matrix elements.

The special form of the input requires some care in

describing the bandwidth properties of the network.

The input was assumed to be of the form [see (46)]

Vi*~~t = sin d COS vt (61)

where u is the subharmonic frequency. A reasonable

criterion for the performance of the network is then how

well the output as a function of modulation frequency v

conforms to the input. For the purpose of computation,

the output was written (57) as

Vo”tput = I t-.+. I sin [(a+ v)t + O.+,]

+ I t-o-. I sin [(a – v)t + 8.-,] (62)

where I t-of,l and 6~f, are determined by Table III and

(60). Since the output in general does not have equal

upper and lower sidebands, (62) represents a distortion

of the input. If we assume an antisymmetric phase shift

characteristic (substantiated by the numerical results

presented in Fig. 10 below) of the form

O.*, = e, + *(+V)

where

4(–V) = – +(v)

then (62) can be rewritten as

VoutDut = [ I t-o+, I + I f“@-, I ] sin [d + I%]

. Cos [vi + +(v)]

+ [ I t-w+” I – I t-m-”] ] Cos [@f+ 00]

sin [vt + ~(v)]. (63)



1962 Krongelb, et uI.: Hypercomplex Matrix Analysis 249

‘or
I

I
I
I TRANSMITTED SIGNAL

+

i?
z

K to

Y
0

!
~

I

REFLECTED SIGNAL

I

5 -
I

1

/

I

I
o

I ,0 086 08 0.6 0.4 0.2 0

TRANSMISSION FACTOR

Fig. 7—Transmitted and reflected anlplitude vs transmission]
factor a for “in-phase” input with r =4/3.

PHASE DISCRIMINATION RATIO
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-lo –
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! 1 1 ,
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(RECIPROCAL ATTENUATION)

Fig. 8—Directionality and phase discrimination ratio YS
transmission factor a for r =4/3.

Th~ first term of (63) is of the same form as the input

(61) arwi we may interpret f30 as a shift in phase of the

carrier and ~(v) as a change in modulation phase. The

second term results from the difference in amplitudes of

the upper and lower sidebands and, for small difference,

can be considered as causing a slight change in the phase

;artgles of the first term.

For the cases we shall discuss 6“ will be close to –45°.

Thus the first term of (63) may also be considered as

approxilnating the ‘iin-phase)’ component of the output

carrier. (NTote that the input carrier of (61) was “in-

phase” with the pump.) The asymmetry between upper

and lower sidebands may then be regarded as adding an

“out-of-phase” component to the carrier. ‘~he inter-

pretation of (63) as an “in-phase” and an “out-of-phase”

component is, of course, only an approximation. How-

ever, because 190is close to — 45°, the general features of

the frequency response as determined from (63) are the

same as would be found if the output were rigorously

resolved into ‘iin-phase’) and ‘iout-of-phase” carrier

components.1~

The quantities t-tif, as a function of modulation

frequency have been calculated on an IBM 704 accord-

ing to Table III and (60) for several values of circuit

parameters. IS Fig,9 shows a plot of I t~~,~ as a fUnction

of v/ti, I tti+,l being plotted to the right of v=O and

I t.,_,/ being shown on the left. The angles 19ti~, are—

plotted in similar fashion in Fig. 10. The asymmetry

between upper and lower sidebands is evident from

Fig. 9. However, the maximum asymmetry within the

useful bandwidth is less than 30 per cent for r = 0.6 and

less than 15 per cent for the other cases. Fig. 10 verifies

the assulnptions we have made about the phase angles.

f7(v = O) is seen to differ from –45° by less than 10°.

Figs. 9 and 10 thus substantiate our interpretation of

(63) and the fact that the first term gives the pre-

dominant behavior. The amplitude of this term (in db

relative to the unit input) is plotted in Fig. 1 t as a

function of modulation frequency. All the curves in

Fig. 11 have a constant p = 0.222, but different values

oi COCOZO.This series corresponds to maintaining a con-

stant pLunp while changing the circuit parameters to

vary gain and bandwidth.

In general, bandwidth decreases as the subharmonic

gain is il~creased. We define a modulation bandwidth as

the modulation frequency at which the amplitude of the

output has dropped by 3 db. Table VI summarizes the

gain and bandwidth of these curves. (Since the modu-

12 BY ~tr:lightfol-ward trigonometry and osing the assumed aSY’lll -

metric form for r?@tV,(63) would be written as

Cos (d + * + $2) Cos (@f — 45”)

where

%,=–450++

For @<10° and I f-u+, I – ] t-@_, ] small, this fro-m does not differ
appreciably from (63 ).

13\Ve acknowledge the aid of B. Butler, T. C. Chel?, ~lrs. ~.
Smith, T’. Jtrilcox, and F. .Zarnfaller, w-ho carried ont various stage;
of coding and programming the problem.
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Fig. 9—Sicleband amplitude vs fractional modulation
frequency for p =0.222, a = 1.0.

Iation bandwidth has been defined in terms of modu-

lation frequency, we imply that the amplifier passes

both the upper and lower sidebands. Therefore, in com-

paring the properties discussed here with those of ampli-

fiers whose performance is stated in terms of a single

input frequency, it would be appropriate to multiply the

modulation bandwidths by a factor of two. “rhis factor

has been included in Table VI.) An increase in the gain-

bandwidth product is noted for the largest value of r.

However, r= 1.3 is close to the maximum value presently

achievable, so that actual gain-bandwidth products

would not be far outside the range shown in the table.

(We should also note that the expressions of Table II

indicate a decrease in gain if Y were increased beyond

about 1.5). The calculations summarized in Table VI

thus show that gain can be traded for bandwidth with

an essentially constant gain-bandwidth product at

moderate values of Y. A slight increase in this product is

noted for large Y, The phase shift within the useful band-

width is seen from Fig. 10 to be a linear function of v.

We saw earlier that some attenuation between the

variable capacitors slightly improved the subharmonic

performance. The effect of this attenuation on the fre-

quency response is shown in Fig. 12 where the responses

for r = 4/3, o COZO = 6 are shown for several values of

attenuation. A predominant feature of these curves is

that increasing attenuation decreases the bandwidth.

Except for the slight increase in the vicinity of a= 0.86

(see Fig. 7), attenuation also decreases the gain.

We have now shown how a variable parameter net-

work can be treated using the hypercomplex admittance

formalism and how the solutions can be stated in such

familiar terms as gain and bandwidth. We proceeded by

I I 1 1
LOWER SIDEBAND UPPER SIDEBAND 4

[ I 1 I ! I I
0.3 0.2 0,) o 0. I 0.2 0.3

FRACTIONAL MODULATION FREQUENCY (u/w)

10—Phase shifts dtik, as a function of fractional modulation
frequency for p =0.222, a = 1.0.

15

10

0

-5

,,06

WCOZO =4.5

(=10

0 0,1 0,2 “5

FRACTIONAL MODULATION FREQUENCY ( VIUI 1

Fig. 1l—Gain vs modulation frequency for p = 0.222, a = 1.0.

TABLE VI

GAIN-BANDWIDTH RELATIONS FOR p =0.222, a = 1.0

v&~ Fractional Voltage
r =pwcozo Gain db Bandwidth Gain X Fract.

Bandwidth
————

0.6 6.0 20 0.40 0.80
0.8 8.6 0 26 0.70
1.0 11 1 H 0.20 0.72
1.3 15.0 5.6 0.19 1 06



J962 A4arcafili and Ring: Broad-band Directional Couplers 251

Fig. 12—Network response for several values of transmission
factor and r= 1.333, QCOZO =6.

first setting up the network problem for constant paranl-

eter elements, and then formally substituting the hyper-

complex representation for the ordinary admittance

functions. In this manner the solution of variable

parameter circuits can take advantage of the existing

methods of ordinary circuit analysis.

.~PPENDIX I

NOT.\TrON

In general, the notation used throughout this paper

is based on the conventional symbols of circuit theor}-

and each term is defined as introduced. However, in our

work, voltages and currents are represented by real

vectors and by complex vectors, ill addition to their

usual forms. Impedances and admittances may also be

real or complex matrices. To distin,qrish between the

various mathematical forms for these quantities we

introduce the following notation:

\’ectors (e.g., V, 1): denoted by bold-face.

llfatrices (e. g., ~): denoted by horizontal bar.

~Tnit matrices of the hypercomplex representation

(1, j, ~, ~): denoted by circumflex (-). (Observe that

this notation distinguishes between I = ~– 1 and

the unit matrix

()() –1j=

10”

Complex quantities (e.g., ~-, V-) : denoted b} tilde

(-) next to the symbol.
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Broad-band Directional Couplers*

E. A. NtARCATIL1~, MEMBER, IRE, AND D. ~[. RIING~, SENIOR MEMBER, IRE

Summary—It is shown how to connect two identical hybrids to

obtain a directional coupler of arbitrary power division that operates
over a broader band than that of the components. The broad-

banding technique is possible with a certain kind of hybrid that

includes Rlblet couplers, multihole hybrids, coaxial hybrids and
semiotical hybrids, but excludes 2’ hybrids and ring hybrids.

Rlblet couplers have a geometry particularly adaptable to the

broad-banding technique. Where the balance of one of these couplers
is better than 1 db, the balance of the broad-band hybrid can be

made better than 0.16 db.
The broad-banding technique is particularly effective in the case

of the 100 per cent transfer directional coupler type of circuit used
for band separation filters and radar duplexers. In the semiotical
waveguide band-splitting filters the bandwidth can be increased

from about one to about four octaves (35-7S kMc to 35-580 kMc).

* Received December 11, 1961; revised manuscript received
February 16, 1962.

t Bell Telephone Laboratories, Holmdel, N. J.

INTRODUCTION

I

N A LARGE 17ARIET>7 of directional couplers such

as the Riblet coupler ,1 the multihole directional

coupler,2 the coaxial directional coupler3 and the

semiotical directional coupler,4 the power division

varies with frequency. We show here that it is possible

to connect two identical hybrids5 in such a way that the

1 H. J. Riblet, “’rhe short-slot hybrid junction, ” PROC. IRE, YO1.
40, pp. 180–184; February, 1952.

2 S. E. Miller, “Coupled wat,e theory and waveguide applica-
tions. ” Bell Sys. Tech, J., 1,01.33, pp. 661–719; h’Iay, 1954.

s E. A. Marcatili, “A circular electric hybrid junction and some
channel-dropping filters, ” Bell Sys. Tech. J., vol. 40, pp. 185-196;
Tanuarv. I o~l

4 E.” h: ‘M&catili and D. L. Bisbee, “Band-splitting filter,” Bell
SM. Tech. J., vol. 40, pp. 197–212; January, 1961.

6 .k usual we understand the hybrid to be a directional coupler
with 50–50 power division at least at one frequency of the band of
operation.


