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The Application of Hypercomplex Matrix Analysis
to Variable Parameter Networks*

S. KRONGELBY, MmeEMBER, 1RE, J. J. McNICHOLY, MEMBER, IRE, AND N. KROLL]

Summary-—~The hypercomplex matrix methods developed to treat
variable parameter elements are reviewed. The application of these
techniques to the linear analysis of networks of variable parameter
elements is demonstrated by considering a specific problem. A net-
work containing two resonated variable capacitors separated by
one-eighth wavelength of transmission line is first considered by
the phase dependent admittance method. A partial treatment of
the subharmonic case is given by this method to provide a physically
plausible understanding of the network behavior. The complete
problem is treated by the hypercomplex matrix methods. The dis-
cussion of the results illustrates how the network properties are
determined from the mathematical formalism. Calculated charac-
teristics of the two-capacitor network are given for several values of
circuit parameters.

I. INTRODUCTION

IRCUITS CONTAINING time-varying elements
<§ are usually analyzed by representing the time-

varying reactive components by phase dependent
negative conductances. While adequate for simple cir-
cuits, this approach is not applicable to complicated
networks because the phases at each component (and
thus the corresponding negative onductances) are not
known at the outset. In his treatment of traveling-
wave amplifiers, Kroll' has shown how the phase de-
pendent admittance can be written in a matrix form
which is phase independent. If we combine the ma-
trix admittance with the techniques of ordinary cir-
cuit theory, the result is a powerful tool for handling
networks containing time-varying components. It is
the purpose of this paper to review the matrix repre-
sentation for variable parameter elements and to show,
by application to a directional parametric amplifier,
how this formalism is used in circuit analysis.

We will first require an understanding of the mathe-
matical description of a variable capacitor,? and this is
developed in Section Il. We will show that a capacitor
varied at angular frequency 2w responds to a subhar-
monic voltage at angular frequency « in a way which
can be represented by a phase dependent admittance.
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ments to be capacitors. The methods described, however, are ap-
plicable to any variable parameter component. In fact, the circuit
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uctors,

Since phase dependent quantities are awkward to work
with, we will, by suitably defining the voltage and cur-
rent as vectors, write the admittance function as a
matrix which does not involve the phase. The matrix
will be expressed as a hypercomplex number, a form
which proves convenient for circuit analysis since there
is a correlation between the components of this repre-
sentation and the real and imaginary parts of ordinary
complex numbers. The hypercomplex admittance for-
mulation can also be developed for the nonsubharmonic
case. This extension to arbitrary frequencies will be
made to give us a method for calculating the frequency
response of networks.

When we have developed the hypercomplex ad-
mittance formalism, we will have sufficient background
to analyze networks containing variable parameter ele-
ments. The use of these principles is best illustrated by
applying them to a specific problem. We will, therefore,
in Section III, introduce a network consisting of two
resonated variable capacitors which are separated by
one-eighth wavelength (at the signal frequency) of
transmission line and which are driven by pump volt-
ages which differ in phase by 90°., This network is of
particular interest since it illustrates a means of obtain-
ing directionality in parametric circuits.? The problem
will first be treated in terms of the phase dependent
admittance representation. Although this method is
not too convenient mathematically, it has the advantage
of providing a physical explanation for the circuit be-
havior which is obscured by the matrix formalism. The
phase dependent admittance treatment will, therefore,
make plausible the results of the matrix analysis.

In Sections IV and V we will respectively solve the
subharmonic and arbitrary frequency cases using
hypercomplex matrix analysis. The discussion will il-
lustrate how the hypercomplex admittance developed
in Section II is combined with the usual techniques of
circuit analysis. We will set up the problem as if the
network were an ordinary circuit and show how to
substitute hypercomplex matrices for ordinary ad-
mittances and vectors for voltages and currents. Since
we have replaced ordinary admittances by matrices, the
problem becomes mathematically complicated. How-
ever, by properly interpreting the voltage vectors which
represent the input and output, the solutions can be
obtained in familiar terms. These solutions are dis-
cussed in Section VI,

3 K. E, Schreiner, private communication, August 7, 1958,
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I1. MATHEMATICAL BACKGROUND

As indicated in the Introduction, we begin by formu-
lating the mathematical representation for variable
parameter elements. The variable capacitor is here con-
sidered in the linear approximation, that is, the signal
voltage is so much smaller than the pump voltage that
we may neglect the capacitance variation caused by the
signal. Further we assume that the capacitance varia-
tion is a linear function of the pump voltage so that the
capacitance may be written as

C = Co[1 + 2p cos 2(wt + )] (1)

where 2w is the angular frequency of the pump.

In any real parametric circuit the voltage sensitive
capacitor has a capacitance-voltage function similar to
that of Fig. 1. The pump is a sinusoidal voltage centered
near the point v=0. Thus (1) constitutes only the lead-
ing terms of a series representation for the true capaci-
tance variation. In addition, anything except an in-
finitesimal signal will result in a capacitance variation
beyond that caused by the pump. Our approximations
are supported by the facts that 1) we can mathemat-
ically show that the higher terms in the capacitance
series have a small effect and 2) laboratory work at
least qualitatively substantiates predictions based on
these approximations,
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Fig. 1—Capacitance variation resulting from sinusoidal pump
voltage applied to typical variable capacitor.

Phase Dependent Admittance

Within the framework of the approximations just
discussed, the properties of a variable capacitor for a
signal at one-half the pump frequency can be expressed
by an admittance function. Just as for an ordinary
capacitor, we start with the relation

qg=Cov

where v is the signal voltage. The current through the
capacitor is the time derivative of the charge so that, if
we write v= 17 cos {(wft+¢) and use (1) {or C, we readily

Krongelb, et al.: Hypercomplex Mairix Analysis

237
obtain (neglecting the current component at 3w)
.4 :
=== wCo[1 4+ pcos2(¢p — )] Vosin (wt + ¢)
+ pwCo sin 2(¢p — ¢)Vy cos (wi 4 ¢). (2)

From this expression we see that the admittance is
Y = juCo[l 4 pcos 2(¢ — ¥)] + pwCosin 2(¢ —¢) (3)

where j=+/—1.

Thus far we have proceeded exactly as one does in
setting up the admittance for ordinary ac components.
The effect of pumping the capacitor manifests itself in
our admittance function in two ways: 1) the admittance
expression contains a conductive term, and 2) both the
conductance and susceptance depend on the relative
phase of the signal and pump. The fact that certain
values of phase make the conductance negative in-
dicates that the variable capacitor may be used as an
amplifier or oscillator.

The Matrix Admittance

The admittance we have derived expresses the prop-
erties of a variable capacitor but is awkward to apply
to any but the simplest networks because the admit-
tance is a function of the phase of the voltage. To derive
a phase independent admittance, we express our voltage
as

v = 91 COS wi — g SIin wi

where v; = Vg cos ¢ and vy =17 sin ¢. We can also write
this voltage as a mathematical vector

()

Similarly, the current can be written as

A
i={_ |
2]
We can now define an admittance matrix relating the

voltage and current in this new representation. It is
simple to verify that the expression

i=Yv (4)
with the admittance matrix ¥ given by

—1 —I—'.p cos 2\0) )
p sin 2y

;. —p sin 2
Y=wa< p sin 24
1+ pcos 2y

is equivalent to (2)."

Voltage and current vectors and matrix admittances
and impedances are used in circuit analysis in the same
way that we use the complex quantities of ordinary ac
analysis. All the methods of circuit analysis are ap-
plicable if we formally substitute vectors for the volt-
ages and currents and matrices for the admittances
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and impedances. The principle of using matrices and
vectors in circuit analysis is best illustrated by applica-
tion to a specific problem, and the succeeding sections
are devoted to such an example. First, however, let us
consider some properties of the admittance matrix
which will simplify its use and show a correlation to
the real and imaginary parts of complex admittances.

The Hypercomplex Representation

Any 2 X2 matrix can be written as a linear combina-
tion of certain unit matrices. (Such a breakdown is
analogous to writing a position vector in terms of unit
vectors along the x, y, and z axes.) The system of unit
matrices is

. 1 0 0 —1\ . 1 0\ . 0 1
(o -G o)) -G )
0 1 1 0 0 —1 10
and any matrix M may be written as a linear combina-
tion
_M—=ai+,3j+7/%+5z.
M as thus written is called a hypercomplex number.

Certain properties of the unit matrices which are useful
and may be readily verified are:

Fe—1 Beol=1
jh= k=1
Y= —gl=k
h=—H=j

It is also useful to note that Euler’s theorem e =cos
647 sin 6 holds in hypercomplex form.

The advantage of the hypercomplex representation
becomes apparent when we apply it to the matrix
admittance of (5). In hypercomplex form this admit-
tance is

¥ = jwCo + pwCo(l cos 2¢ — k sin 2¢)
= jwCo + pwCole—2
eViwCo(1 + kp)e . (6)

The correlation between hypercomplex admittances
and the usual complex admittances now becomes ap-
parent. If we set p=0 in the above expressions, we get
the hypercomplex admittance for an ordinary capacitor
as Y =jwCs. This formula is similar to the complex
admittance except that j= +v/—1 is replaced by

A\t o/
The correspondence of 7 to 7 is carried even further
when we note that jf=—1. In general, we can write
hypercomplex admittances and impedances from com-
plex admittances and impedances by using the real

part as the coefficient of 1 and the imaginary part as the
coefficient of 7. Thus, in the hypercomplex representa-
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tion, the impedance of a resistor and inductor would be,
respectively, Zr=R1 and Z; =jwlL.*

Arbitrary Frequency Case

Our treatment thus far has been restricted to a signal
frequency of exactly half the pump frequency. If a
signal with frequency not equal to half the pump fre-
quency is fed into a parametric circuit, then the out-
put will contain both the original frequency and an
idler frequency. This fact can be mathematically repre-
sented by the equations

I(wl) = 711V(w1) + ?miéV(wz)
I(ws) = YoukV(w1) + TVaV(ws) (7)

where the currents and voltages are considered to be
vectors as in the preceding paragraphs.

Eq. (7) is convenient if there is a real distinction
between signal and idler as, for instance, would be the
case if the signal and idler were well separated from
each other so that the idler could be excluded from the
output by means of a filter. For circuits operating near
the subharmonic frequency, it is preferable to use a
specialized form of signal. Let us consider a modulated
signal where the carrier is exactly the subharmonic
frequency and the angular modulation frequency is ».
Then the signal contains the angular frequencies
wi=w—y and w:=w-+v where 0 =wpump;2. (We assume
that the carrier amplitude is zero. If this is not so,
the carrier can be handled separately by the analysis
developed for the subharmonic case.) Note that the
idler frequency for the w; component of the signal is w,
and vice versa. Thus, the output for an amplitude
modulated subharmonic input will have the same upper
and lower sideband frequencies as the input, and the
parametric action will not introduce any new fre-
quencies.

Eq. (7) may now be specialized to the amplitude
modulated signal. In matrix form, (7) reads

(I(w1)> _ (?11 ?12%) (V(w1)> (8)
I(wg) ?mé 722 V(co 2) '
The four component vector

(o)

corresponds to a voltage
V(@) = Vigcos wit — Vygsin wit
+ V21 cOs wal — Vo sin wat. (9)

For an amplitude modulated voltage it is more con-
venient to talk about the angular carrier frequency w
and angular modulation frequency » than about upper

4 For convenience, thehunity matrix will not be explicitly written.
Thus Z=R implies Z=R]1.
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and lower sideband frequencies. Eq. (9) may be re-

written in terms of w and v as

V() = Real Part { Ve cos wl — V™ yei! sin wt}  (10)
where
Vo= Ve
Yo, = Vet

and the correspondence to (9) is expressed by
Vicospr = Vi + Vo Vysing; = Voy — Vi
Vo cos e = Viz -+ Vo Vosings = Vi — Vo
W = w — ¥ wes = w -+ ¥

We may represent the voltage 1°(f) by a vector

V- = <V~1>.
o

If we compare this vector representation with that used
in (8), we note that we now have a complex two-com-
ponent vector rather than a real four-component vector.
The current may be similarly represented by a complex
vector and we may write a matrix relation

I =7V~ (11)

where ¥~ is a complex 2X2 matrix. It may be shown
that, in the terms of (8), that

T = %(_?11 + Yﬂ) + %(Yla + _721)13
+]]A[%(z—yll - 1—;22) + %(?12 - _?21)]%] (12)

Since ¥~ is a complex 2 X 2 matrix, we have written it in
the hypercomplex representation and refer to it as a
“complex” hypercomplex number. For the particular
case of a variable capacitor

T~ = ¢¥(jo + 71n)Co(1 + Ep)e v (13)

Note that for » =0, this expression reduces to (6) which
was derived for the subharmonic voltage. We can also
show that the complex hypercomplex impedance of a
variable inductor is

Z~ = ¥(jow + j1v)Lo(1 + Ep)ei¥. (14)

I11. PuAsE DEPENDENT ADMITTANCE SOLUTION

In the preceding section we have seen how a variable
capacitor can be represented by a phase dependent
admittance and by a matrix admittance. These con-
cepts and the methods of applying them will be clarified
if we consider a specific problem.

The Two-Capacitor Circuit

The network chosen for the illustration is shown in
Fig. 2. C; and C, are variable capacitors placed across a
transmission line at points one-eighth of the sub-
harmonic wavelength apart. An inductor L is placed
across each capacitor and is chosen to resonate out the
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Fig. 2—Two-capacitor network used to
tllustrate mathematical formalism.

nonvarying portion of the capacitance at angular sub-
harmonic frequency w. The capacitors C; and C, are
physically identical but differ in the phase of their
pumps. The pump at C; lags that at Cy by 90° so that
we may write

Gy

(f

Co[1 + 2p sin 2wt
and
Cy = Col1 + 2p sin 2(wt — x/4)].

Because of the difference in pump phase between C,
and C,, the network looks different for a subharmonic
signal traveling from right to left than it does {or one
going from left to right. Thus, we would expect the
circuit to exhibit directionality. Also, as in any sub-
harmonic parametric circuit, we would expect the be-
havior of the circuit to depend on the phase of the
signal. In particular, we would like the network to
amplify signals of a particular phase traveling from 1
to 2 and to attenuate those signals which are 90° dif-
ferent from the amplified phase. Also, we do not want
amplification of signals of any phase traveling from
2 to 1.

The easiest way to analyze the circuit is by use of the
matrix representation outlined in the preceding section.
However, in formalizing the problem for mathematical
convenience, the matrix method tends to obscure our
physical feeling for the behavior of the circuit. Before
proceeding with the matrix analysis, we shall, there-
fore, discuss the network in terms of phase dependent
admittances. Because these admittances are of the
same type we are familiar with for ordinary resistors
and capacitors, the discussion should give us some
physical understanding of the circuit.

Phase Dependent Admittance Analysis

The phase dependent admittance approach is to re-
place ; and C, by effective admittances (which of
course, depend on the phase of the signal). A signal
traveling along the transmission line will see these
admittances as discontinuities which give rise to mul-
tiple reflections, the transmitted portions of which add
up to the signal transmitted through the network.

In discussing the problem it is convenient to resolve
the signal into two components separated in phase
by 90°. One component, referred to as “in-phase,” is of
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the proper phase relative to the pump to make the
conductance of the wvariable capacitor a negative
maximum. The other component, called “out-of-
phase” or “quadrature,” then gives a maximum positive
conductance. We shall only treat the case of an “in-
phase” input at terminal 1 by the phase dependent
admittance method and defer the complete solution to
the more appropriate matrix analysis. The portion of
the problem treated here should be sufficient to illus-
trate the phase dependent admittance and to provide an
insight into the behavior of the network.

If we write the capacitance as
C = Co[1 + 2p sin 2(wt + ¢)]

and the signal voltage as sin (wt+¢) then the phase
dependent admittance is®

YV = — pwCocos 2(¢ — ¥) + jwCo[l + psin2(¢ — ¢)]. (15)

Since ¢ =0 at C; the “in-phase” signal corresponds to
¢=0. The total admittance placed across the line at
point 1 is obtained from (15) (and the fact that jwC,y is
resonated out by the inductance) as G,= —pwCy. This
conductance represents a discontinuity on the trans-
mission line. The effect of this discontinuity is to cause
a reflection which, by ordinary transmission line theory,
is characterized by a reflection coefficient

G
.
P
K= (16)
Gy
— 41
Gp

where Gy is the characteristic admittance of the trans-
mission line and Gp=Gy+G,.. We shall see that, for the
case under discussion, only G,=pwCy and G,=—pw(
occur. Thus, it is convenient to set 7=IGZ/G0] and
to define

(4
Kp=K(Gy>0) = ———

gy 1)

(18)

¥
K_EK(Gx<0)=2——

where the right-hand side of (17) and (18) follow directly
from (16) and the definition of #. In this notation the
reflection coefficient for the “in-phase” input wave at
the first capacitor would be K_.

We can now, with the aid of Fig. 3, follow the signal
through its successive reflections. The portion of a unit
incident wave which is transmitted past the first capaci-
tor is (K_-+1). At the second capacitor this wave will
still be “in-phase” with the pump at that point so that
the reflection coefficient is again K_. Thus, the part of

5 Eq. (15) differs from (3) because of the different form assumed
for the capacitance and signal voltage. If we substitute y =y —45°
and ¢ =¢—90° for ¢ and ¢ in (3), then we obtain (15).
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Fig. 3—Internal reflection path for an “in-phase”
input to the network of Fig. 2.

N o ouT

(=)
(b)

Fig. 4—Block diagram of feedback representation for “in-phase”
input to two-capacitor network. (a) “In-phase” output. (b) “Out-
of-phase” output.

the original signal which is transmitted past the second
capacitance is (K_-+1)%? while the part which is
flected back towards the inputis K _(K_+1).

When this reflected portion reaches the first capacitor,
it will again be partially reflected. This time, however,
the reflection coefficient will be K, since the signal has
traversed the one-eighth wavelength section two times
and thus lags the pump by 90°. The reflected signal is
then given by K,.K. (K_+41) and is shifted 180° in
phase because it is reflected from a discontinuity whose
impedance is less than the characteristic impedance of
the line. Similar considerations give the amplitude
after reflection by the second capacitor. By the time
the signal gets back to the input it has made four
traverses of the one-eighth wavelength section and has
undergone two 180° phase changes at reflections. Thus,
the next reflection is determined by K_ and we get a
wave of amplitude K 2K_2(K_+1) which is 180° out of
phase with the original input.

If we consider the component of the total output
which is “in-phase” with the pump at the output, the
network can be regarded as shown in Fig. 4(a). The
blocks (K_—+1) represent the amplification by the
variable capacitances. 1/(148) results from regarding
the reflections as giving a feedback system in which a
fraction K_2K.? of the signal transmitted through the

re-
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transmission line section is fed back to the input. The
over-all gain is readily found to be

1
Ap=(K_+ 1) ———r
o= K0
4(2
RECET )
(4 —#%)% + ot

If we consider the quadrature components of the out-
put, it is not difficult to see that the network can be
represented as in Fig. 4(b), and that the over-all gain
for this portion of the output is

¥ 2
Agoﬂ = Ao°<2 + 7») .

The feedback approach illustrates certain properties
of the network. The blocks representing gain in Fig. 4
can be considered to arise from the negative conduct-
ance which an “in-phase” input signal sees the variable
capacitor to be. Thus we would expect that an “out-
of-phase” signal would see positive conductances and
would be attenuated. Likewise, if a signal traveling in
the reverse direction were “in-phase” at one capacitor,
it would be “out-of-phase” at the other, and so there
would be little, if any, over-all gain. We would also
expect the forward gain to be increased by some at-
tenuation between the capacitors. This paradoxical
statement can be understood from the feedback ap-
proach when we remember that the portion of the
signal which we regard as feedback has been reflected
through the one-eighth wavelength section four times.
Since the directly transmitted signal passes through
only once, it is clear that attenuation would have a
much stronger effect in reducing feedback than it
would in attenuating the direct signal.

The properties we have just outlined are made
plausible by the phase dependent admittance approach.
We shall now verify them quantitatively by a hyper-
complex matrix analysis of the problem.

(20)

IV. TauE HyPERCOMPLEX TREATMENT
OF SUBHARMONIC CASE

As indicated earlier, the hypercomplex analysis
proceeds by using those techniques of ordinary circuit
analysis which may be appropriate to the problem and
formally substituting vectors for the currents and volt-
ages, and matrices for the admittances and im-
pedances. Since our problem can be considered as a
cascading of a variable capacitor, a transmission line
section, and another variable capacitor, the transmis-
sion matrix approach seems appropriate.t

The Ordinary Transmission Matrix

In the notation of Fig. 5 the transmission matrix

& See, for instance, S. Ramo and J. R. Whinnery, “Fields and
Waves in Modern Radio,” John Wiley and Sons, Inc.,, New York,
N. Y.; pp. 461-463, 1953.
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| 2
— o
V|+~—> <—V2+
Vi -— = \p

Fig. 5—Wave convention for transmission matrix.

(a) [£3) {

2o

s

)

IATTENUATOR|

Fig. 6—Cascade equivalent of two-capacitor network.
equation is written as

<V2> <T11 T12> <Vl‘L
Vot To  To Vf)
where 7,; are the elements of the transmission matrix
and the () superscript indicates a wave incident on
the network while a (—) sign denotes an outgoing
wave. [n applying the transmission matrix to the vari-
able capacitor problem, the voltages will be replaced by
two component vectors so that the vectors in (21) will
really have four components. Likewise, each of the T;’s
will become 2 X2 matrices.

The network of Fig. 2 may be regarded as a cascading
of the sections shown in Fig. 6. Sections (a) and (d) are
shunt elements C; and Cs respectively, each in parallel
with L. Section (b) is the one-eighth wavelength of
transmission line while (¢) represents an attenuation
introduced between (a) and (d). We include the attenua-
tor in our present treatment because our phase dependent
admittance discussion has indicated that attenuation
would have the interesting effect of increasing the gain.

The transmission matrix for the over-all network may
now be determined by writing the matrices for each
section and taking their product. Following Ramo
and Whinnery,” the transmission matrices are:

(21)

_ 1 — ZoVi/2  —ZoVi/2

Twy = (22)
ZyY1/2 14 ZyV4/2

_ 1—ZyVe/2 —Z,V./2

T = ( i ¥/ ) (23)
ZoYo/2 14 ZyY2/2

. e Bl () \/i 1—9 0

(0 e
0 es) 2\ 0 14

T (0& 0 > 25

@ =\, Ve (25)

where « i1s a scalar attenuation factor defined by
Vom=al1t and Vi =a V"
The transmission matrix for the whole network can

now be obtained from the product of (22)—(25) as
T = T(d)T(C)T(b)T(a). (26)

In performing the multiplication, we must be careful to

" Ramo and Whinnery, op. cit., p. 463.
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preserve the order of terms in the product since each
of these terms will be replaced by a matrix. The evalua-
tion of (26) is straightforward and, after some long
algebra, we obtain

7-Y2
Za
( a(4—=B)-C a2(D—E)—(F+G+C)> @0
o} (F—G)+(D+E+C) A+B+C
where
oYL ZoYy
=1ty =t
ZoVy ZoYs
B=j+—+
2 2
B2 Y V1 v Z3Y iV
! 1
D= ZyY./2 E=7Z,Vy/2
F = 2Z,Yy/2 G = ZyVy/2
and
B2=1— o vi=14 o

Hypercomplex Substitution

Thus far we have treated the problem exactly as if
the network were made up of ordinary (nonvarying)
components (except that we preserved the order of
terms in the multiplication). We can now adapt this
treatment to the variable capacitor problem by formally
substituting the matrix 7 for j and writing the admit-
tances Y; and Y, in appropriate matrix form.®* The
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admittance Y for section (a) arises from the parallel
combination of L and C;. By (6) the matrix admittance
would be

Vi=Yr+ Ve, = — JL_—Fijo + pwColei /2

w
where we have taken ¥ = —45° (See Footnote 5.) Be-
cause of resonance, the first two terms of Y cancel;
the last term simplifies by Euler’s theorem and we get

V1 = pwCiok. (28)
In similar fashion we get for ¥, (with ¢ = —90°)
Vo= — pwCol. (29)

If we introduce » =pwCyZ, and denote the elements of
(27) by subscripts as in (21), the transcription of the T
matrix to hypercomplex form yields

\/2[ (ﬁﬂ — 2a?
2

4o
+ 2a%r] — ZaZVIAeJ

2

2a? —l——r +7

11

2

— 2
le:\/ lrz—l-é—r +7271+B2rk:]
4o |- 2
- V2= < 5 \
Ty = Zx—_ 5 r'~’—~2—rzj+rﬁ‘“’l+r'y?k]
— V2T v? 2
T22:E_2_772+j<2_772>:|' (30)

Since each element written in (30) is a 2X2 matrix,
the 7 matrix can be written as a 4X4 matrix with
scalar elements. In this form

| ! |
2 | 2 | 2 | 2
20 + — 7 — 2a?r%| 20% + 2a®> — — 1% | ~?~ 4+ B% | vl — —r?
| | 2 |
[ | [
————————— | e e
a | 9 I a ' P}

2o v | S )

20 — 2a> + —7? | 2o + 772 + 2a%r | ¥ + r? i 5 rt — B%
— | | |
- V2 | | |

T=—t———————— |- |——— |————————— (1)
40{ 92 [ 2 ‘ 9 I 9
v, | ° I - | s,

— r> 4+ | B + — r? ! 2 ——7? | r: — 2
2 | | 2 |
| | [

————————— |- —————— = ——— —
s R
Y - Y
B — —r* | ===yt — =t 2 | 2——7
2 I 2 | | 2
L | | | .

® Rigorously, we should replace all admittances and impedances
by matrices. However, Z, is a real impedance so that it would be
replaced by the dlagonal matrix

Z1
ozo> !

Thus the term Z,Y, for instance, is equivalent to Zo¥; and so we
retain Zg as a scalar.

Zy =

The matrix of (31) combined with (21) completely
represents the network il we write each of the voltage
waves as a vector. We shall begin our solution by con-
sidering the same case as was treated by the phase
dependent admittance method. In this way we can
develop an understanding of the vector voltages,



1962

Krongelb, et al.: Hypercomplex Malrix Analysis

243

TABLE I
NeErwork RespoNseE 10 Unit Input IN TERMS 0F “IN-PHASE” AND “OuT-0F-PHASE” COMPONENTS

Input In-Phase Out-of-Phase In-Phase Out-of-Phase
at at at at
Output Terminal 1 Terminal 1 Terminal 2 Terminal 2
2 2)® —2a%? — 20’2 2a(4 — r2
Transmitted-in-Phase 2olr 12 LT T 24— 1)
8 i) 8 8
3,2 —_ 2 — — p2 — 3,2
Transmitted Out-of-Phase Z—QL ELZ*JL _iaﬁlfll “270‘_"_
8 [ 3 8
D@ — wt —2a2r(2 — "+ 2)(2 — wrt 2atr(r + 2
Reflected in-Phase Q@ — W) ~2r2 - 1) £ 2@ - w) 2or(r +2)
8 ] 8 d
—2a%r(r + 2 —r(2 — (@ — pr? 2atr(2 — —2 = (2 —
Reflected Out-of-Phase __“L;’vt_) mﬁ——%L—ﬂ—l -—?ff_(?_ﬁ _ﬁ__%(*___’ir_)

1+ ot
H=
,32:]_2“2
=1+ a?

Vector Representation of Inputs

The problem we treated by the phase dependent
admittance was that of “in-phase” input v =sin wf at the
left hand terminals of the network. According to our
vector definition in Section II, an “in-phase” wave
incident on the left corresponds to

ve-(°)

Since there is no input on the right (we assume a
matched termination),

e (2)

The remaining quantities V;~ and V.~ represent,
respectively, the reflected and transmitted portions of
the signal to be determined.

In our phase dependent admittance treatment we
determined only V., the transmitted output. In that
discussion we resolved the output into a component
which was “in-phase” with the pump at the output, and
a component which was in quadrature. This resolution
is a convenient one for a traveling pump and signal, and
we shall retain it in our present discussion. Writing the
output in this way corresponds to writing v as
A cos (wt—m/4)—B sin (wt—w/4) where —B is the
“in-phase” component and 4 the “out-of-phase.” Since
V.~ is defined from Vy =a cos wt—0b sin wi, we can
obtain 4 and B {rom V,~ by simple trigonometric
manipulation. The expressions for 4 and — B obtained
by the matrix method (the actual solutions are given
in Table I) are the same as (20) and (19), respectively.

The advantage of the matrix method arises from the

(32a)

(32b)

fact that all aspects of the problem can be determined
from the one matrix of (31). By the phase dependent
admittance method we would have to repeat the entire
problem from the beginning each time we changed the
phase or position of the input. Using the matrix method,
however, we write the appropriate vector for each input
condition and solve the resulting equation. The problem
is completely solved if in addition to (32), we consider
the following three inputs:

An “out-of-phase” input on the left and no input on
the right, represented by

1
V1+ - < > V2+ -
0

An “in-phase” input at the right and no input on the
left, represented by

)
_— VF=
V2\1

An “out-of-phase” input at the right and no input
on the left, represented by

()
Vot = —— Vit =
v2\—1

For each of these inputs there will be a transmitted
wave on the side of the network opposite the nonzero
input and a reflected wave on the same side as the input.
Each of these outputs is resolved into an “in-phase”
and an “out-of-phase” component and the gain
(output/input) for each component is tabulated in
Table 1. The outputs may also be expressed in terms of
amplitude and phase shift; this representation is given
in Table II for the four input conditions.

(33)

V2+ =

(34)

(35)
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TABLE I1
NETWORK RESPONSE TO UNIT INPUT IN TERMS OF AMPLITUDE AND PHASE SHIFT

In-Phase

Out-of-Phase

Input
at at
Output Terminal 1 Terminal 1

In-Phase Out-of-Phase
at at
Terminal 2 Terminal 2

2
Transmitted Amplitude ?a [atrt - (r + 2)4]112

2a
? [a“r“ + @ - 7)4]1/2

261 [a4,4 4 (4 — )22 2;0‘ [(4 — 92 + atrt]2

22 2 2 _ — — —_ . —
Transmitted Phase tan™1 o ¢ 2 tan™! I:a—zy————g——{)—z:l tan™! (—1——412);2—&] tan~! _(1___‘1_2)_6%%_
a¥r? + (r 4 2)? ot + (2 — 1)? 4 — (14 a¥r? —(?F+ 1)+ 4
o+ 2 Sloe—wyr | (@0 -
Reflected Amplitude . [(2 = prd)? + 4at]r2 — [(2 — pr?)? 4 datr2 F Aad(2 — e T ot + 222
— 2 2 —_ — —
Reflected Phase tan™! [——Za—— tan™! S Chell/ B tan~! I:——zfﬁ(i——rzw tan™? I:———za—z(ij——a—
2 — pr® —2=nNQ2—w? r+ 22 — —@ =12 —w?

(The ambiguity in phase angle (¢) is removed by the rule that sin ¢ has the same sign as the numerator of the algebraic expression for tan ¢.)

V. BANDWIDTH ANALYSIS

The question which arises in the practical application
of any circuit is “What is the bandwidth?” We shall now
consider this problem for our two-capacitor network,
thereby illustrating the complex hypercomplex formal-
ism developed for bandwidth analysis. The transmission
matrix approach is applicable to the bandwidth problem
if we use the complex hypercomplex admittances rather
than the hypercomplex form used in the subharmonic
treatment. (The pure subharmonic solution can, in fact,
be obtained from the bandwidth analysis. The reader,
however, should profit from seeing the conceptually
simpler real hypercomplex analysis applied separately
and can now follow the present treatment with an eye
towards seeing how it reduces to our earlier work.)

Complex Hypercomplex Transmission Matrix

The complex hypercomplex formalism was developed
to specifically treat the case of a subharmonic carrier w
amplitude modulated at angular frequency ». If we
write this signal as in (10)

V(#) = Real Part { V"1e" cos wf — V™2e?* sin wt} (36)

then we could define a complex vector representation

(-)

V™ = .

V™o

A complex hypercomplex admittance relating this volt-
age vector to the current written in the same form was
defined by (11) and was stated for a variable capacitor
in (13). If we write the transmission matrix of (21) with
complex hypercomplex elements and express the voltage
waves as complex vectors, we can obtain the solution
to our bandwidth problem. The transmission matrix
will be a function of the angular modulation frequency
v so we can determine the output waves as a function
of v for any particular input.

Just as in the subharmonic case, we obtain the trans-
mission matrix by considering the cascaded sections of
Fig. 6 so that T, as in (26) is

T=TwoTolwnTw.
T and T are the same as (22) and (23) where now
Y, and ¥V, will be complex hypercomplex numbers.

Y, is the admittance of the parallel combination C; and
L so that

Y 1= (T )e,+ (¥ )z 37

(Y~)¢, is obtained from (13) by setting y= —45°
(see Footnote 5) as

(Yo, = [iaf + 3¢ = jrfl + 1k Zi™

We have introduced here, in addition to the abbrevia-
tion r=pwCoZ,, the notation

f=v/w

(38)

and
qg = wCoZo.

The complex hypercomplex admittance of the induct-
ance is obtained from (14) with p =0 so that, neglecting
quadratic and higher terms in f,

(T)p= 2t = — —‘+]'“—Z : (39)
Y™, is obtained by substituting (38) and (39) into (37)
and using the resonance condition wCo=1/wL to get

Y1 = [2jgf — jrfl + rk]Zo (40)
In similar fashion we find
Y~y = |2jqf — jrfk — #l]Zs 0. (41)

Egs. (40) and (41), when substituted in (22) and (23),
determine T~ and T7g. (We may note that
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(40) and (41) reduce to (28) and (29) respectively
at f=0.) The resulting matrices in their 4 X4 forms are
. | . | . | . )
2—r—j2f | Jrf e 7241 | Jrf I
“““““““ R T
. . . ! .
. jrf | 2+ — j2qf | Jrf o — J2qf
T @ = Py A — i ——————— J‘ ——————— [ — (42)
. . . | .
v+ j2qf ‘1 —Jjrf ll 247+ j2¢f | —jrf 1
!
“““““““ A A
. . . [ .
—jrf || —r + j2qf [1 —jrf |2 =+ j2f J
|
and
. ! } . {
2+ (=20 +1f) | r BRI 4
_________ Em___n____v|_ﬁ_f,¥,v4;__v____\__
. ! l i
) r : 2 — jQ2¢f + rf) I r \1 —iQ2qf + #f)
T @ = LY } ————————— | T (43)
7Q2qf — f) | —r | 24 Qyf =) =7
_________ ;ﬁ_——_._————_——-_‘*74"—_——&4'_——4—*__—;*;‘
. | i .
—r | 7(2qf + 1f) | —r v 24 jQ2qf + 1f)
|
We can also show that
. | J ! )
ale— VT4 | 2p~ 1w l4 | 0 | 0 |
! | |
***** T
_ _a26~1f1r/4 | 26-jf1r/4 | 0 i 0
B V2 ! | !
Tl e =——]————— f—— = fm |l —— (44)
2a | J ) J
0 | 0 | le7|'/4 | _elfﬂ'/"l
| | |
----- |—— | == | ———
0 ; 0 ][ e T4 ‘[ eifrl4
| | |

The matrices of (42)—(44) are rather complicated.
Their product, which is the transmission matrix for the
entire network, would be even more intractable, and we
would not readily see the properties of the network from
this complicated matrix. It, therefore, seems best to
continue the problem numerically with the aid of a
computer. The computer (an IBM 704) is programmed
to receive the matrices of (42)-(44) in numerical form
and to manipulate them so that the properties of the
network can be read directly from the computer output.

We ask the computer to determine a scattering matrix
from the over-all transmission matrix. Transmission
matrices are convenient for setting up the problem
initially since the over-all matrix is the product of the
matrices for the individual sections. However, the
transmission matrix does not conveniently relate output
voltages to the input. For instance, in the subharmonic
problem we had to solve a system of simultaneous
equations to get our solution.

The scattering matrix, on the other hand, expresses
output quantities in terms of input and is defined by

(=)-r ()
Vi~ Veyt)
Eq. (45) is seen to be a rearrangement of (21) with out-
going waves (negative superscripts) on the left. Our
solution is thus determined from the input by the multi-
plication of a simple vector by a matrix which is ob-
tained from the transmission matrix by a transformation
which is programmed into the computer.? [We note that

(45) differs from the usual scattering matrix definition
in that Viy ™ and V'~ are interchanged.)

(45)

9 When we solved the simultaneous equations which arose in
treating the subharmonic case we, in effect, determined 7’. The
solution of simultaneous equations can be expressed mathematically
as a matrix transformation. The equations which arose in the sub-
harmonic case were so simple, however, that it was not necessary
to introduce the mathematical sophistication of a matrix transfor-
mation.



246

Input Vectors

Thus far we have seen how to determine our solution
in terms of a vector representation. It remains for us
now to specify our input waves in vector form and to
see how to interpret the output vectors as ordinary volt-
ages. Our input wave consists of an amplitude-modu-
lated subharmonic carrier and may be written as

v = sin (wt 4 ¢) cos vt

Just as for the unmodulated input, it seems reasonable
that maximum gain would occur when the carrier of a
signal incident from the left in Fig. 2 was “in-phase”
with the pump at the first capacitor; i.e., ¢=0. We
therefore want to express the voltage wave

VayT(t) = sin i cos . (46)

As may be seen by use of (36), the vector representation
for this “in-phase” input is

=)

In this manner we can determine the vector representa-
tion for any carrier phase. As for the subharmonic prob-
lem, the four cases specified in (32)—(33) are of interest
here. These input conditions and their vector represen-
tations are:

(47)

a) “In-phase” carrier at left and no input on right

() o)

b) “Out-of-phase” carrier at left and no input at right

() re()

¢) “In-phase” carrier at the right and no input at left

1 /71 0
V~2+=——_‘ V~1+:
aG) =)

d) “Out-of-phase” carrier at right and no input at left

1 1 0
() ()
V2\—1 0

Qutput Vectors and Their Interpretation

(48)

(49)

(50)

(51)

The output waves V1,~ and 15~ may now be deter-
mined for each of the input conditions by substitution
into (45). We shall consider the details only for the input
of (48). Eq. (45) combined with (48) reads

T T T T 0)
Vo [T a1 1Tas 1Tay 1Tag)l—1
< )Z 1 - ) (52)
V- 731 732 s (7 0 J
)

7 Ty Ty
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where we assume that the individual elements of the
T’ matrix have been calculated. V=5~ is then easily seen

to be
V~2~— = (—t~12>.
—i" 22

From our definition of (36) we may write
V() = Real Part { —£15e%! cos wf + (™ pe?* sin w!]
= Real Part {%(—t~12 - jt~22)6"(‘°+”)‘

+ H(—t71e + e e it (53)

where the second line is obtained from the first by
trigonometric manipulation. The (w+») component of
the output (upper sideband) is thus determined by the
quantity

Fopr = — 3710 + j1700). (34)
The (w—v) component, or lower sideband, is conven-
iently stated as the complex conjugate of these elements.
By taking the complex conjugate of the brackets in (53),

it follows that the (w—») component is determined by

— 37" + "), (85)

t~w—v =

We have shown so far that for an amplitude modu-
lated input of the form (sin wt cos »¢) as in (46) the upper
and lower sidebands of the output are given by (54) and
(55), respectively. It is usual to express the relation be-
tween input and output in terms of an amplitude change
(or gain) and phase shift. Since the input of (46) can be
written as

Vir(t) = 3[sin (@ + »)1 + sin (@ — »)¢] (56)

the output, in terms of gain and phase shift, would be
written as

Vo () = {f/w+v sin [(w + »)t + o]

+ ¢, sin [(w — )t + Hw_,,]}. (57)

We can approach the form of (§7) by writing (54) and

(55) respectively, as
Fots(9) =

I t~“’+"! 6j¢w+v

and

t~w——v(¢) = ll‘~w‘, 67¢w+v,
The upper sideband is then given by

Real Part { } F ot

efa,_f_,,ej(w-i-v)t}

= | urs] cos [(@ + 91 + o] (58)
and the lower sideband by
Real part { | 17, eibomei@ )]
= [ 7uss| cos [(0 = )1 + ¢us)]. (39)

The amplitudes of (58) and (59) are the same as the cor-
responding terms in (57), but the trigonometric forms
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TABLE III

MAaTRIX ELEMENT COMBINATION FOR DETERMINING NETWORK RESPONSE

Input Carrier in Carrier Out Carrier in Carrier Out
Phase at of Phase Phase at of Phase
Output Terminal 1 Terminal 1 Terminal 2 Terminal 2

Transmitted Upper Sideband 5 e — 41T 1)

ICRETIE S AETY:

=P+ T
+ s+ ]

A+ D — T
T — )]

Transmitted Lower Sideband FU T — gt 10%)

T 45 )

a—-n [i~.ss + T
+ 0w+ )]

F1¢! ‘|‘J.)[l~.zs — [Ta*
F I — ]

Reflected Upper Sideband (70 — )

W + 400

1 -]')[l‘~13 +
+ 7 (e + )]

e +j)[t~13 — T
R [(ArTE et

Reflected Lower Sideband (7 * — J175%)

a5 0*)

45 [ — o
+ (T = 1)

O )l (AR Aty
+ T+ ]

differ. We can make the respective terms identical by
letting

Bwiv = ¢wj:v "l— 7r//2'
Then the relation between {~,4,(0) and t,4+,(¢) is
t~in(6) =

= l l~wtv; i@ty +i2)

I t~wiv ‘ euty

P 67'1r/2[ i~wiv! eibuty

= Jtes(9). (60)

The quantities {7 ,4,(0) and 7,.,(¢) differ only in the
definition of the phase angle. However, {~,+,(6) is chosen
so that the argument 6,4, is the phase shift defined by
(57). From (60) we see that the correct phase shifts can
be determined from the elements of the scattering
matrix if we multiply (54) and (55) by 7 and take the
argument of the resulting complex quantities. The gain
is the modulus of these quantities and is, of course, un-
affected by multiplication by .

The reasoning of the preceding paragraphs can be
used to express the gain and phase shift in terms of the
scattering matrix elements for the various input condi-
tions. These relations are summarized in Table 111. For
the “in-phase” carrier case treated above, the entries
for the upper and lower sidebands of the transmitted
output are just (54) and (55) multiplied by j. To deter-
mine the gain and phase shift {or any particular input-
output combination, we take the modulus and phase
angle of the corresponding entry in Table IT1.

VI, Discussion or REsSULTS

In the preceding sections we have seen how the phase
dependent admittance method and the matrix methods
can be used to determine the characteristics of a net-
work. The transmission and reflection properties for a
subharmonic signal are suinmarized in Tables | and II.
The form of Table 1 expresses the output in terms of
“in-phase” and “out-of-phase” components while Table

II gives the information in terms of a total amplitude
and phase shift. The response to a modulated signal can
be calculated {from Table IIT,

Subharmonic Properties

As indicated earlier, the network we have been
analyzing should exhibit both directionality and phase
sensitivity. These properties can be verified by calcu-
lating the quantities in Tables I and I for some specific
cases. The principal parameter which determines the
behavior of the network is r =pw(yZy, the ratio of nega-
tive conductance to the characteristic admittance of the
transmission line. Appropriate values for this parameter
and for wCyZy (which will be necessary to determining
the frequency response) are shown in Table IV. Two
presently available diodes are cited, one designed for
microwave use, and one intended [or low frequencies.
The table shows that a reasonable value for wCyZ, is of
the order of 6. If p is chosen as p=0.22

(a value sub-
stantiated by empirical capacitance versus voltage
characteristics), we then see that r is in the vicinity of
r=1.3.

Table V shows the numerical values of the quantities
in Tables I and 1l forae=1 (no attenuation) and r =4/3.
Since a unit input is assumed, these quantities may be
considered as gain factors. We see from the table that
the only appreciable transmitted signal occurs for an
“in-phase” input at terminal 1. Thus we have demon-
strated that the network should be able to select a signal
of a particular phase and should provide amplification
only in one direction.'® (These properties have also been
observed experimentally in a two-capacitor network at
25 Mc by Allen.'') The fairly large reflected components
indicate a mismatch [or certain input phases. In any
application of the network these reflections must be

10 The gain in the reverse directivn is close to unity for both
phases. In general we cannot expect a traveling-wave type para-
metric amplifier to give attenuation in the reverse direction for all
phases. [f we built an amplifier which would attenuate one phase,

there would be another phase which is amplified.
W Private communication, August 22, 1958,
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TABLE 1V
CrrcuiT PARAMETERS FOR AVAILABLE VARIABLE CAPACITORS

i . Cy at Oper-| wCoZ, for r for
Frequency Diode ating bias | Zo= 10009 p=0.22
10 kMc | Texas Instruments | 1.0 pf at 6.3 1.4

Type XD-503 0v
25 Mc Two Pacific Semi- | 170 pf at 5.4 1.2
conductors 1.0v
Type V-100 in | each diode
parallel
TABLE V

VoLTAGE REsPONSE OF NETWORK TO UNIT INPUT
FOR r=4/3, a=1.0

Input | In-Phase | Out-of- | In-Phase | Out-of-
at Phase at at Phase at
Terminal | Terminal | Terminal | Terminal
Output 1 1 2 2
Transmitted
in-Phase 5.5 —0.88 ~0 88 1.1
Transmitted
Out-of-Phase 0.88 0.22 —1.1 —0.88
Total Trans.
Amplitude 5.6 0.91 14 1.4
Reflected
In-Phase 0.24 —0.44 0.24 2.2
Reflected
Out-of-Phase —2.2 —0.05 0.44 —0.05
Total Ref'td.
Amplitude 2.2 0.4 0.50 2.2

carefully considered since they can lead to instability in
the over-all circuit. It is possible that mismatch can be
reduced by such circuit modifications as slightly chang-
ing the length of the one-eighth wavelength section of
line between the two capacitors or making this section
of different characteristic impedance than the input and
output lines. The mathematical methods of this paper
should provide a powerful tool for analyzing such
modifications.

Our matrix treatment has been set up to take account
of attenuation between the two variable capacitors. The
effect of this attenuation on an “in-phase” input signal
is shown in Fig. 7. There the transmitted and reflected
signals (expressed in db relative to the input) are plotted
as functions of transmission factor (reciprocal attenua-
tion). We see that the transmitted component initially
increases to a maximum at o= 0.86, and then drops off
as the attenuation is increased. In terms of the phase
dependent admittance analysis, this effect is explained
by noting that the attenuation at first reduces the feed-
back and thus increases the amplification. However, as
the attenuation becomes too large, the loss of trans-
mitted signal becomes more important than the gain
increase resulting from further reduction in feedback
and the output begins to drop. We note also that the
attenuation effects a slight reduction in the reflected
component,
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Fig. 8 shows directionality and phase discrimination
ratio as a function of attenuation. These parameters
characterize two significant properties of the network.
Directionality is defined as the ratio of transmitted out-
put when the signal is incident on terminal 1 to the
transmitted power output when the signal is incident on
terminal 2. The phase discrimination ratio is the ratio
of the transmitted output for an “in-phase” input to the
transmitted output for an “out-of-phase” input. The
phase discrimination for a signal traveling from terminal
1 to 2 and the directionality for an “in-phase” input are
both improved by attenuation.

Frequency Response

In Section V we saw how the complex hypercomplex
formalism could be applied to determine the frequency
response of the network. The complex hypercomplex
analysis was set up to handle an amplitude modulated
subharmonic carrier so that the input could be con-
sidered as an upper and lower sideband centered about
the subharmonic frequency. In this way the problem of
considering the idler frequency separately was avoided.
Table III gives ¢~44,, the sidebands of the output for
an input consisting of equal upper and lower sidebands
in terms of scattering matrix elements.

The special form of the input requires some care in
describing the bandwidth properties of the network.
The input was assumed to be of the form [see (46) ]

Vinput = sin ot cos vt (61)

where w is the subharmonic frequency. A reasonable
criterion for the performance of the network is then how
well the output as a function of modulation frequency »
conforms to the input. For the purpose of computation,
the output was written (57) as

Voutput = l t~w+v sin [(OJ + V)l + 0w+,,]
+ ‘ t~w_,,! sin [(w — »)t + 6,_,]

(62)

where [t"wi, and 8+, are determined by Table I1I and
(60). Since the output in general does not have equal
upper and lower sidebands, (62) represents a distortion
of the input. If we assume an antisymmetric phase shift
characteristic (substantiated by the numerical results
presented in Fig. 10 below) of the form

gwiv = 00 + \I/(i_V)

where
Y(=v) = — ¥ @)
then (62) can be rewritten as
Voutpws = || 7ors| + | 70| ] sin [wt + 6]
-cos [vt + ¢¥(»)]
+ [ or] = [a| ] cos [wf + 6]

-sin [vt + ¢ (»)]. (63)
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Fig. 7—Transmitted and reflected amplitude vs transmission
factor « for “in-phase™ input with r=4/3.
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Fig. 8—Directionality and phase discrimination ratio vs
transmission factor « for r=4/3.

The first term of (63) is of the same {form as the input
(61) and we may interpret #, as a shift in phase of the
carrier and Y(») as a change in modulation phase. The
second term results from the difference in amplitudes of
the upper and lower sidebands and, for small difference,
can be considered as causing a slight change in the phase
angles of the first term.

For the cases we shall discuss 8¢ will be close to —45°.
Thus the first term of (63) may also be considered as
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approximating the “in-phase” component of the output
carrier. (Note that the input carrier of (61) was “in-
phase” with the pump.) The asyminetry between upper
and lower sidebands may then be regarded as adding an
“out-of-phase” component to the carrier. The inter-
pretation of (63) as an “in-phase” and an “out-of-phase”
component is, of course, only an approximation. How-
ever, because 0 is close to —45°, the general features of
the frequency response as determined from (63) are the
same as would be found i{ the output were rigorously
resolved into “in-phase” and “out-of-phase” carrier
components.i?

The quantities 7,4+, as a function of modulation
frequency have been calculated on an IBM 704 accord-
ing to Table 111 and (60) for several values of circuit
parameters.” Fig. 9 shows a plot of tw! as a function
of v/w, |t,,,+,, being plotted to the right of »=0 and
t,—»| being shown on the left. The angles 8.;, are
plotted in similar fashion in Fig. 10. The asymmetry
between upper and lower sidebands is evident from
Fig. 9. However, the maximum asymmetry within the
useful bandwidth is less than 30 per cent for »=0.6 and
less than 15 per cent for the other cases. Fig. 10 verifies
the assumptions we have made about the phase angles.
6(»=0) is seen to differ {from —45° by less than 10°.
Figs. 9 and 10 thus substantiate our interpretation of
(63) and the fact that the first term gives the pre-
dominant behavior. The amplitude of this term (in db
relative to the unit input) is plotted in Fig. 11 as a
function of modulation {requency. All the curves in
Fig. 11 have a constant p=0.222, but different values
ol wCoZ,. This series corresponds to maintaining a con-
stant pump while changing the circuit parameters to
vary gain and bandwidth.

In general, bandwidth decreases as the subharmonic
gain is increased. We define a modulation bandwidth as
the modulation frequency at which the amplitude of the
output has dropped by 3 db. Table VI summarizes the
gain and bandwidth of these curves. (Since the modu-

2 By straightforward trigonometry and using the assumed asym-
metric form for 6,4,, (63) would be written as

Vo = v | Fan P+ 17 P+ 2[Can | [7on] cos 26
-sin (wf + ¥ + &) sin (wt — 45°)

-cos (vt + ¢ + £2) cos (wf — 45°)

where
0y = — 45° + ]
= [ Ll = ] sne)
| Cam] + | Toms| coso
6= tant 1 up| =[] cose

[[~w+vi + {t~w+vl sin ¢
For ¢ <10° and [y | — [{74y| small, this form does not differ
appreciably from (63).

13 We acknowledge the aid of B. Butler, T. C. Chen, Mrs. E.
Smith, T. Wilcox, and F. Zarnfaller, who carried out various stages
of coding and programming the problem.
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Fig. 10—Phase shifts 84+, as a function of fractional modulation
Fig. 9—Sideband amplitude vs fractional modulation frequency for p=0.222, «=1.0.
frequency for p=0.222, a=1.0.

lation bandwidth has been defined in terms of modu- 20 —r - T - T
lation frequency, we imply that the amplifier passes
both the upper and lower sidebands. Therefore, in com-
paring the properties discussed here with those of ampli-
fiers whose performance is stated in terms of a single
input frequency, it would be appropriate to multiply the
modulation bandwidths by a factor of two. This factor
has been included in Table V1.) An increase in the gain-
bandwidth product is noted for the largest value of 7.
However, r=1.3 is close to the maximum value presently
achievable, so that actual gain-bandwidth products
would not be far outside the range shown in the table.
(We should also note that the expressions of Table I1
indicate a decrease in gain if » were increased beyond
about 1.5). The calculations summarized in Table VI
thus show that gain can be traded for bandwidth with
an essentially constant gain-bandwidth product at | . = .
moderate values of 7. A slight increase in this product is 0 ol 02
noted for large 7. The phase shift within the useful band- FRACTIONAL MODULATION FREGUENCY (/)
width is seen from Fig. 10 to be a linear function of ».

We saw earlier that some attenuation between the
variable capacitors slightly improved the subharmonic

wCoZa®3.6
r=08

1

GAIN IN DB
o

i

/

a

r=10

-5 |

i
O W AN

<
o' L

Fig. 11—Gain vs modulation frequency for p=0.222, a=1.0.

performance. The effect of this attenuation on the fre- TABLE VI
quency response is shown in Fig. 12 where the responses GAIN-BANDWIDTH RELATIONS FOR p=0.222, «=1.0
for r=4/3, wCeZy=06 are shown for several values of Vol —
attenuation. A predominant feature of these curves is . o7 | Gaindb V%lt?ge gragtiqga}ll GainO;E;cht.
that increasing attenuation decreases the bandwidth. am andwidth | Bandwidth
ExcepF for the slight .increase in the vicinity of «=0.86 ¢ 6.0 20 0.40 0.80
{see Fig. 7), attenuation also decreases the gain. 0.8 8.6 27 0 26 0.70

We hav h h ariabl t t 1.0 11 1 3.6 0.20 0.72

e have now shown how a variable parameter net- 13 150 56 0 10 1706

work can be treated using the hypercomplex admittance
formalism and how the solutions can be stated in such
familiar terms as gain and bandwidth. We proceeded by



1962

20— T T T T T

GAIN IN DB

| 1 i |
o 0.1 02 © 03

FRACTIONAL MODULATION FREQUENCY (v/w}

Fig. 12—Network response for several values of transmission
factor and 7 =1.333, wCo0Zo=6.

first setting up the network problem for constant param-
eter elements, and then formally substituting the hyper-
complex representation for the ordinary admittance
functions. In this manner the solution of variable
parameter circuits can take advantage of the existing
methods of ordinary circuit analysis.
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ArprENDIX [
NoTaTioN

In general, the notation used throughout this paper
is based on the conventional symbols of circuit theory
and each term is defined as introduced. However, in our
work, voltages and currents are represented by real
vectors and by complex vectors, in addition to their
usual forms. Impedances and admittances may also be
real or complex matrices. To distinguish between the
various mathematical forms for these quantities we
introduce the following notation:

Vectors (e.g., V, I): denoted by bold-face.

Matrices (e.g., ¥): denoted by horizontal bar.

Unit matrices of the hypercomplex representation
(1,7, k, 1) : denoted by circumflex (7). (Observe that
this notation distinguishes between 7=+/—1 and
the unit matrix

) <0 —1>
J = 1 o)
Complex quantities (e.g., Y™, V7): denoted by tilde
(") next to the symbol.
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Broad-band Directional Couplers’

E. A. MARCATILI{, MEMBER, IRE, AND D. H. RINGY, SENIOR MEMBER, IRE

Summary—It is shown how to connect two identical hybrids to
obtain a directional coupler of arbitrary power division that operates
over a broader band than that of the components. The broad-
banding technique is possible with a certain kind of hybrid that
includes Riblet couplers, multihole hybrids, coaxial hybrids and
semioptical hybrids, but excludes T hybrids and ring hybrids.

Riblet couplers have a geometry particularly adaptable to the
broad-banding technique. Where the balance of one of these couplers
is better than 1 db, the balance of the broad-band hybrid can be
made better than 0.16 db.

The broad-banding technique is particularly effective in the case
of the 100 per cent transfer directional coupler type of circuit used
for band separation filters and radar duplexers. In the semioptical
waveguide band-splitting filters the bandwidth can be increased
from about one to about four octaves (35-75 kMc to 35-580 kMc).

* Received December 11, 1961; revised manuscript received
February 16, 1962.
t Bell Telephone Laboratories, Holmdel, N. J.

INTRODUCTION

N A LARGE VARIETY of directional couplers such
I[ as the Riblet coupler,! the multihole directional
coupler,? the coaxial directional coupler® and the
semioptical directional coupler,* the power division
varies with frequency. We show here that it is possible
to connect two identical hybrids® in such a way that the

L H. §. Riblet, “The short-slot hybrid junction,” Proc. IRE, vol.
40, pp. 180-184; February, 1952.

£S. E. Miller, “Coupled wave theory and waveguide applica-
tions.” Bell Sys. Tech. J., vol. 33, pp. 661-719; May, 1954.

3 E. A. Marcatili, “A circular electric hybrid junction and some
channel-dropping filters,” Bell Sys. Tech. J., vol. 40, pp. 185-196;
January, 1961.

+E” A. Marcatili and D, L. Bisbee, “Band-splitting filter,” Bell
Svs. Tech. J., vol. 40, pp. 197-212; January, 1961,

5 As usual we understand the hybrid to be a directional coupler
with 50-50 power division at least at one frequency of the band of
operation.



